mysql load data 一千多万卡死

mysql load data 一千多万卡死,第1张

猜你想问的是:千万级数据批量导入mysql的优化

1.数据库引擎:

常见的索引引擎

InnoDB,现在默认的引擎,支持外键、行锁、事务。默认是一句一事务,一句一提交。事务是需要开启的,并提交或回滚来关闭的。批量录入数据,手动开启事务,并手动提交。开启事务:start transaction;提交事务:commit;回滚事务:rollback。读写效率均等,没有特别突出的地方。InnoDB对表格的管理是基于但文件的。文件包括表头、约束、数据等信息。

MyISM,推荐的读库引擎,没有事务,支持索引。写效率相对于InnoDB较低,读效率相对于InnoDB高很多。MyISAM对表格的管理是基于多文件的。有表头文件、约束文件、数据文件。

MGR_MyISM,对MyISAM的一个变形优化,对表的信息做了一个额外的索引管理。

MEMORY,内存引擎,数据只存储在内存,不落地到磁盘。通常应用在启动数据库的同时创建若干视图,视图使用内存引擎管理(不安全 *** 作,对视图可写,会同步到表格)。也应用在,应用启动时,提供一个临时的表格,存储应用常用的,几乎不变的数据(如:电商中的商品类型)。

sql解析效率低,与Nosql比较

2.批量sql

insert into table_name() values()----单条数据录入

insert into table_name() values(),(),()—多条数据录入。带有缓存的。可以通过命令配置,也可以通过配置文件配置。单条sql不要录入过多的数据。通常不超过3M~10M.

3.数据库配置:DBA处理

配置SQL批处理缓存:

配置是否记录binlog,不推荐关闭

配置IO缓存

4.本地数据库导入:DBA处理—效率高

通过txt或csv文件做本地导入,mysqlimport xxx文件

5.代码级开发

batch批处理。找临界值,循环多次访问数据库,批量写入。

如:临界值是2000条数据。

int i = 0

while(){undefined

if(i++ % 2000 == 0){undefined

executeBatch()

}

addBatch()

}

executeBatch()

6.索引问题

索引只提升读效率,会降低写效率。

降低写效率的原因:

索引是写入数据过程中维护的,将索引字段的值进行比较处理,并保存在一个树下,树是B[+]Tree。平衡树,查询效率高,维护效率低。

推荐是索引使用方式是:建表时,先不创建索引,当数据相对趋于稳定,或正式商业发布时,创建索引。

索引是先内存维护,索引内存空间不足,需要持久化到磁盘。

数据千万级别之多,占用的存储空间也比较大,可想而知它不会存储在一块连续的物理空间上,而是链式存储在多个碎片的物理空间上。可能对于长字符串的比较,就用更多的时间查找与比较,这就导致用更多的时间。

可以做表拆分,减少单表字段数量,优化表结构。

在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致。

主要两种拆分 垂直拆分,水平拆分。

垂直分表

也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。

垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Product一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。

数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。

水平分表

针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库 *** 作还是有IO瓶颈。不建议采用。

水平分库分表

将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。

水平分库分表切分规则

1. RANGE

从0到10000一个表,10001到20000一个表;

2. HASH取模

一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。

3. 地理区域

比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。

4. 时间

按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。

分库分表后面临的问题

事务支持

分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

跨库join

只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。

跨节点的count,order by,group by以及聚合函数问题

这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。

数据迁移,容量规划,扩容等问题

来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。

ID问题

一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由.

一些常见的主键生成策略

UUID

使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。

Twitter的分布式自增ID算法Snowflake

在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。

跨分片的排序分页

一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。

对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成,实现分区的代码实际上是通过对一组底层表的对象封装,但对SQL层来说是一个完全封装底层的黑盒子。

MySQL实现分区的方式也意味着索引也是按照分区的子表定义, 没有全局索引

分区的意思是指将同一表中不同行的记录分配到不同的物理文件中 ,几个分区就有几个.idb文件。MySQL数据库的分区是局部分区索引,一个分区中既存了数据,又放了索引。也就是说,每个区的聚集索引和非聚集索引都放在各自区的(不同的物理文件)。

1、可以让单表 存储更多的数据

2、 分区表的数据更容易维护 ,可以通过删除与那些数据有关的分区,更容易删除数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等 *** 作。

3、部分查询能够从查询条件确定只落在少数分区上, 查询速度会很快

4、通过跨多个磁盘来分散数据查询,来 获得更大的查询吞吐量

要使定时事件起作用,MySQL的常量GLOBAL event_scheduler必须为on或者是1。

1、查看scheduler的当前状态:

2、修改scheduler状态为打开(0:off , 1:on):

3、临时打开定时器(四种方法):

4、永久生效的方法,修改配置文件my.cnf

5、临时开启某个事件

6、临时关闭某个事件


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7134887.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-02
下一篇 2023-04-02

发表评论

登录后才能评论

评论列表(0条)

保存