所谓按天,不过是日期精确到天而已。
错误的按日期分区例子
最直观的方法,就是直接用年月日这种日期格式来进行常规的分区:
mysql> create table rms (d date)-> partition by range (d)
-> (partition p0 values less than ('1995-01-01'),
-> partition p1 VALUES LESS THAN ('2010-01-01'))
上面的例子中,就是直接用"Y-m-d"的格式来对一个table进行分区,可惜想当然往往不能奏效,会得到一个错误信息:
ERROR 1064 (42000): VALUES value must be of same type as partition function near '),
partition p1 VALUES LESS THAN ('2010-01-01'))' at line 3
上述分区方式没有成功,而且明显的不经济,老练的DBA会用整型数值来进行分区:
mysql> CREATE TABLE part_date1-> ( c1 int default NULL,
-> c2 varchar(30) default NULL,
-> c3 date default NULL) engine=myisam
-> partition by range (cast(date_format(c3,'%Y%m%d') as signed))
-> (PARTITION p0 VALUES LESS THAN (19950101),
-> PARTITION p1 VALUES LESS THAN (19960101) ,
-> PARTITION p2 VALUES LESS THAN (19970101) ,
-> PARTITION p3 VALUES LESS THAN (19980101) ,
-> PARTITION p4 VALUES LESS THAN (19990101) ,
-> PARTITION p5 VALUES LESS THAN (20000101) ,
-> PARTITION p6 VALUES LESS THAN (20010101) ,
-> PARTITION p7 VALUES LESS THAN (20020101) ,
-> PARTITION p8 VALUES LESS THAN (20030101) ,
-> PARTITION p9 VALUES LESS THAN (20040101) ,
-> PARTITION p10 VALUES LESS THAN (20100101),
-> PARTITION p11 VALUES LESS THAN MAXVALUE )
Query OK, 0 rows affected (0.01 sec)
搞定?接着往下分析
mysql> explain partitions-> select count(*) from part_date1 where
-> c3> '1995-01-01' and c3 <'1995-12-31'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: part_date1
partitions: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 8100000
Extra: Using where
1 row in set (0.00 sec)
万恶的mysql居然对上面的sql使用全表扫描,而不是按照我们的日期分区分块查询。原文中解释到MYSQL的优化器并不认这种日期形式的分区,花了大量的篇幅来引诱俺走上歧路,过分。
正确的日期分区例子
mysql优化器支持以下两种内置的日期函数进行分区:
TO_DAYS()YEAR()
看个例子:
mysql> CREATE TABLE part_date3
-> ( c1 int default NULL,
-> c2 varchar(30) default NULL,
-> c3 date default NULL) engine=myisam
-> partition by range (to_days(c3))
-> (PARTITION p0 VALUES LESS THAN (to_days('1995-01-01')),
-> PARTITION p1 VALUES LESS THAN (to_days('1996-01-01')) ,
-> PARTITION p2 VALUES LESS THAN (to_days('1997-01-01')) ,
-> PARTITION p3 VALUES LESS THAN (to_days('1998-01-01')) ,
-> PARTITION p4 VALUES LESS THAN (to_days('1999-01-01')) ,
-> PARTITION p5 VALUES LESS THAN (to_days('2000-01-01')) ,
-> PARTITION p6 VALUES LESS THAN (to_days('2001-01-01')) ,
-> PARTITION p7 VALUES LESS THAN (to_days('2002-01-01')) ,
-> PARTITION p8 VALUES LESS THAN (to_days('2003-01-01')) ,
-> PARTITION p9 VALUES LESS THAN (to_days('2004-01-01')) ,
-> PARTITION p10 VALUES LESS THAN (to_days('2010-01-01')),
-> PARTITION p11 VALUES LESS THAN MAXVALUE )
Query OK, 0 rows affected (0.00 sec)
以to_days()函数分区成功,我们分析一下看看:
mysql> explain partitions
-> select count(*) from part_date3 where
-> c3> date '1995-01-01' and c3 <date '1995-12-31'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: part_date3
partitions: p1
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 808431
Extra: Using where
1 row in set (0.00 sec)
可以看到,mysql优化器这次不负众望,仅仅在p1分区进行查询。在这种情况下查询,真的能够带来提升查询效率么?下面分别对这次建立的part_date3和之前分区失败的part_date1做一个查询对比:
mysql> select count(*) from part_date3 where
-> c3> date '1995-01-01' and c3 <date '1995-12-31'
+----------+
| count(*) |
+----------+
| 805114 |
+----------+
1 row in set (4.11 sec)
mysql> select count(*) from part_date1 where
-> c3> date '1995-01-01' and c3 <date '1995-12-31'
+----------+
| count(*) |
+----------+
| 805114 |
+----------+
1 row in set (40.33 sec)
可以看到,分区正确的话query花费时间为4秒,而分区错误则花费时间40秒(相当于没有分区),效率有90%的提升!所以我们千万要正确的使用分区功能,分区后务必用explain验证,这样才能获得真正的性能提升。
注意:
在mysql5.1中建立分区表的语句中,只能包含下列函数:
ABS()
CEILING() and FLOOR() (在使用这2个函数的建立分区表的前提是使用函数的分区键是INT类型),例如
mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST( FLOOR(c) )( -> PARTITION p0 VALUES IN (1,3,5), -> PARTITION p1 VALUES IN (2,4,6) -> ) ERROR 1491 (HY000): The PARTITION function returns the wrong type mysql> CREATE TABLE t (c int) PARTITION BY LIST( FLOOR(c) )( -> PARTITION p0 VALUES IN (1,3,5), -> PARTITION p1 VALUES IN (2,4,6) -> ) Query OK, 0 rows affected (0.01 sec)DAY()
DAYOFMONTH()
DAYOFWEEK()
DAYOFYEAR()
DATEDIFF()
EXTRACT()
HOUR()
MICROSECOND()
MINUTE()
MOD()
MONTH()
QUARTER()
SECOND()
TIME_TO_SEC()
TO_DAYS()
WEEKDAY()
YEAR()
YEARWEEK()
用mysql的表分区功能(逻辑上还是一个表,对程序来说是透明的),通过分区函数可实现自动分表。如果想实现根据数据每月或每周动态的再分区,可以写一个存储过程实现分区调整逻辑,最后写一个mysql event(自动化作业)按周期调用这个存储过程就行了。SELECT DATE_FORMAT(time,'%Y-%m-%d') as day, sum(case when amount>0 then amount when amount=0 then 0 end) as amount1from table where time>='2014-11-01' group by day
我没有测试。time表示日期,amount表示数量。查询11月后每天成交数量
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)