分区介绍:
一、什么是分区?
所谓分区,就是将一个表分成多个区块进行 *** 作和保存,从而降低每次 *** 作的数据,提高性能。而对于应用来说则是透明的,从逻辑上看只有一张表,但在物理上这个表可能是由多个物理分区组成的,每个分区都是独立的对象,可以进行独立处理。
二、分区作用
1.可以逻辑数据分割,分割数据能够有多个不同的物理文件路径。
2.可以存储更多的数据,突破系统单个文件最大限制。
3.提升性能,提高每个分区的读写速度,提高分区范围查询的速度。
4.可以通过删除相关分区来快速删除数据
5.通过跨多个磁盘来分散数据查询,从而提高磁盘I/O的性能。
6.涉及到例如SUM()、COUNT()这样聚合函数的查询,可以很容易的进行并行处理。
7.可以备份和恢复独立的分区,这对大数据量很有好处。
三、分区能支持的引擎
MySQL支持大部分引擎创建分区,入MyISAM、InnoDB等;不支持MERGE和CSV等来创建分区。同一个分区表中的所有分区必须是同一个存储引擎。值得注意的是,在MySQL8版本中,MyISAM表引擎不支持分区。
四、确认MySQL支持分区
从MySQL5.1开始引入分区功能,可以如下方式查看是否支持:
老版本用:SHOW VARIABLES LIKE '%partition%'
新版本用:show plugins
五、分区类型
1. RANGE分区:基于属于一个给定连续区间的列值,把多行分配给分区。
例如,可以将一个表通过年份划分成两个分区,2001 -2010年、2011-2020。
2. LIST分区:类似于RANGE分区,LIST是列值匹配一个离散值集合中的某个值来进行选择。
比如 根据字段 把值为1、3、5的放到一起,2、4、6的另外放到一起 等等...
3. HASH分区:基于用户定义的表达式的返回值来进行选择分区,该表达式使用将要插入到表中的这些行的列值来进行计算,这个函数必须产生非负整数值。
通过HASH运算来进行分区,分布的比较均匀
4. KEY分区:类似于按HASH分区,由MySQL服务器提供其自身的哈希函数。
按照KEY进行分区类似于按照HASH分区
六、使用分区注意事项
1. 如果表中存在primary key 或者 unique key 时,分区的列必须是paimary key或者unique key的一个组成部分,也就是说,分区函数的列只能从pk或者uk这些key中取子集
2. 如果表中不存在任何的paimary key或者unique key,则可以指定任何一个列作为分区列
3. 5.5版本前的RANGE、LIST、HASH分区要求分区键必须是int;MySQL5.5及以上,支持非整形的RANGE和LIST分区,即:range columns 和 list columns (可以用字符串来进行分区)。
七、分区命名
1. 分区的名字基本上遵循其他MySQL 标识符应当遵循的原则,例如用于表和数据库名字的标识符。应当注意的是,分区的名字是不区分大小写的。
2. 无论使用何种类型的分区,分区总是在创建时就自动的顺序编号,且从0开始记录。
八、 创建分区
1. RANGE分区:
解读:以上为 uuid小于5时放到p0分区下,uuid大于5且小于10放到p1分区下,uuid大于10且小于15放到p2分区下,uuid大于15 一直到最大值的存在p3分区下
2. LIST分区:
解读:以上为uuid 等于1/2/3/5时放到p0分区,7/9/10放到p1分区,11/15放到p2分区。当时用insert into时 如果uuid的值不存在p0/p1/p2分区时,则会插入失败而报错。
3. HASH分区:
HASH分区主要用来确保数据在预先确定数目的分区中平均分布。在RANGE分区和LIST分区中必须明确指定一个指定的列值或列值集合以指定应该保存在哪个分区中。而在HASH分区中,MySQL会自动完成这些工作,要做的只是基于将要被哈希的列值指定一个表达式,以及指定被分区的表将要被分割成的分区数量,如:
解读:MySQL自动创建3个分区,在执行insert into时,根据插入的uuid通过算法来自动分配区间。
注意:
(1) 由于每次插入、更新、删除一行,这个表达式都要计算一次,这意味着非常复杂的表达式可能会引起性能问题,尤其是在执行同时影响大量行的运算(例如批量插入)的时候。
(2) 最有效率的哈希函数是只对单个表列进行计算,并且它的值随列值进行一致的增大或减小,因为这考虑了在分区范围上的“修剪”。也就是说,表达式值和它所基于的列的值变化越接近,就越能有效地使用该表达式来进行HASH分区。
3.1:线性HASH分区
线性HASH分区在“PARTITION BY”子句中添加“LINEAR”关键字。
线性HASH分区的有点在于增加、删除、合并和拆分分区将变得更加快捷,有利于处理含有及其大量数据的表。它的缺点在于各个分区间数据的分布不大可能均衡。
4. KEY分区
类似于HASH分区,HASH分区允许用户自定义的表达式,而KEY分区则不允许使用用户自定义的表达式;HASH分区只支持整数分区,KEY分区支持除了blob和text类型之外的其他数据类型分区。
与HASH分区不同,创建KEY分区表的时候,可以不指定分区键,默认会选择使用主键或唯一键作为分区键,没有主键或唯一键,就必须指定分区键。
解读:根据分区键来进行分区
5. 子分区
子分区是分区表中,每个分区的再次分割,适合保存非常大量的数据。
解读:主分区使用RANGE按照年来进行分区,有3个RANGE分区。这3个分区中又被进一步分成了2个子分区,实际上,整个表被分成了3 * 2 = 6个分区。每个子分区按照天进行HASH分区。小于2017的放在一起,2017-2020的放在一起,大于2020的放在一起。
注意:
(1) 在MySQL5.1中,对于已经通过RANGE或LIST分区了的表在进行子分区是可能的。子分区既可以使用HASH分区,也可以使用KEY分区。这也被称为复合分区。
(2) 每个分区必须有相同数量的子分区。
(3) 如果在一个分区表上的任何分区上使用SUBPARTITION来明确定义任何子分区,那么就必须定义所有的子分区。
(4) 每个SUBPARTITION子句必须包含(至少)子分区的一个名字。
(5) 在每个子分区内,子分区的名字必须是惟一的,目前在整个表中,也要保持唯一。例如:
子分区可以用于特别大的表,可以在多个磁盘间分配数据和索引。例如:
九、MySQL分区处理NULL值的方式
十、分区管理概述
可以对分区进行添加、删除、重新定义、合并或拆分等管理 *** 作。
① RANGE和LIST分区的管理
1. 删除分区语句如:alter table tbl_test drop partition p0
注意:
(1) 当删除了一个分区,也同时删除了该分区中所有的数据。
(2) 可以通过show create table tbl_test来查看新的创建表的语句。
(3) 如果是LIST分区的话,删除的数据不能新增进来,因为这些行的列值包含在已经删除了的分区的值列表中。
2. 添加分区语句如:alter table tbl_test add partition(partition p3 values less than(50))
注意:
(1) 对于RANGE分区的表,只可以添加新的分区到分区列表的最高端。
(2) 对于LIST分区的表,不能添加已经包含在现有分区值列表中的任意值。
3. 如果希望能不丢失数据的条件下重新定义分区,可以使用如下语句:
REORGANIZE会对分区的数据进行重构。
ALTER TABLE tbl_name REORGANIZE PARTITION partition_list INTO(partition_definitions)
(1) 拆分分区如:
ALTER TABLE tbl_name REORGANIZE PARTITION partition_list INTO(partition s0 values less than(5),partition s1 values less than(10))
或者如:
ALTER TABLE tbl_name REORGANIZE PARTITION p0 INTO(partition s0 values in(1,2,3), partition s1 values in(4,5))
(2) 合并分区如:ALTER TABLE tbl_name REORGANIZE PARTITION s0,s1 INTO(partition p0 values in(1,2,3,4,5))
4. 删除所有分区,但保留数据,形式:ALTER TABLE tbl_name remove partitioning
② HASH和KEY分区的管理
1. 减少分区数量语句如:ALTER TABLE tbl_name COALESCE PARTITION 2
2. 添加分区数量语句如:ALTER TABLE tbl_name add PARTITION partitions 2
③ 其他分区管理语句
1. 重建分区:类似于先删除保存在分区中的所有记录,然后重新插入它们,可用于整理分区碎片。如:ALTER table tbl_name REBUILD PARTITION p2,p3
2. 优化分区:如果从分区中删除了大量的行,或者对一个带有可变长度的行(也就是说,有VARCHAR,BLOB或TEXT类型的列)做了许多修改,可以使用 ALTER TABLE tbl_name OPTIMIZE PARTITION来收回没有使用的空间,并整理分区数据文件的碎片。如:ALTER TABLE tbl_name OPTIMIZE PARTITION p2,p3
3. 分析分区:读取并保存分区的键分布,如:ALTER TABLE tbl_name ANALYZE PARTITION p2,p3
4. 检查分区:检查分区中的数据或索引是否已经被破坏,如:ALTER TABLE tbl_name CHECK PARTITION p2,p3
5. 修补分区:修补被破坏的分区,如:ALTER TABLE tbl_name REPAIR PARTITION p2,p3
十、查看分区信息
1. 查看分区信息:select * from information_schema.partitions where table_schema='arch1' and table_name = 'tbl_test' G
2. 查看分区上的数据:select * from tbl_test partition(p0)
3. 查看MySQL会 *** 作的分区:explain partitions select * from tbl_test where uuid = 2
十一、 局限性
1. 最大分区数目不能超过1024,一般建议对单表的分区数不要超过50个。
2. 如果含有唯一索引或者主键,则分区列必须包含在所有的唯一索引或者主键在内。
3. 不支持外键。
4. 不支持全文索引,对分区表的分区键创建索引,那么这个索引也将被分区。
5. 按日期进行分区很合适,因为很多日期函数可以用。但是对字符串来说合适的分区函数不太多。
6. 只有RANGE和LIST分区能进行子分区,HASH和KEY分区不能进行子分区。
7. 临时表不能被分区。
8. 分区表对于单条记录的查询没有优势。
9. 要注意选择分区的成本,没插入一行数据都需要按照表达式筛选插入的分区。
10. 分区字段尽量不要可以为null
所谓按天,不过是日期精确到天而已。
错误的按日期分区例子
最直观的方法,就是直接用年月日这种日期格式来进行常规的分区:
mysql> create table rms (d date)-> partition by range (d)
-> (partition p0 values less than ('1995-01-01'),
-> partition p1 VALUES LESS THAN ('2010-01-01'))
上面的例子中,就是直接用"Y-m-d"的格式来对一个table进行分区,可惜想当然往往不能奏效,会得到一个错误信息:
ERROR 1064 (42000): VALUES value must be of same type as partition function near '),
partition p1 VALUES LESS THAN ('2010-01-01'))' at line 3
上述分区方式没有成功,而且明显的不经济,老练的DBA会用整型数值来进行分区:
mysql> CREATE TABLE part_date1-> ( c1 int default NULL,
-> c2 varchar(30) default NULL,
-> c3 date default NULL) engine=myisam
-> partition by range (cast(date_format(c3,'%Y%m%d') as signed))
-> (PARTITION p0 VALUES LESS THAN (19950101),
-> PARTITION p1 VALUES LESS THAN (19960101) ,
-> PARTITION p2 VALUES LESS THAN (19970101) ,
-> PARTITION p3 VALUES LESS THAN (19980101) ,
-> PARTITION p4 VALUES LESS THAN (19990101) ,
-> PARTITION p5 VALUES LESS THAN (20000101) ,
-> PARTITION p6 VALUES LESS THAN (20010101) ,
-> PARTITION p7 VALUES LESS THAN (20020101) ,
-> PARTITION p8 VALUES LESS THAN (20030101) ,
-> PARTITION p9 VALUES LESS THAN (20040101) ,
-> PARTITION p10 VALUES LESS THAN (20100101),
-> PARTITION p11 VALUES LESS THAN MAXVALUE )
Query OK, 0 rows affected (0.01 sec)
搞定?接着往下分析
mysql> explain partitions-> select count(*) from part_date1 where
-> c3> '1995-01-01' and c3 <'1995-12-31'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: part_date1
partitions: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 8100000
Extra: Using where
1 row in set (0.00 sec)
万恶的mysql居然对上面的sql使用全表扫描,而不是按照我们的日期分区分块查询。原文中解释到MYSQL的优化器并不认这种日期形式的分区,花了大量的篇幅来引诱俺走上歧路,过分。
正确的日期分区例子
mysql优化器支持以下两种内置的日期函数进行分区:
TO_DAYS()YEAR()
看个例子:
mysql> CREATE TABLE part_date3
-> ( c1 int default NULL,
-> c2 varchar(30) default NULL,
-> c3 date default NULL) engine=myisam
-> partition by range (to_days(c3))
-> (PARTITION p0 VALUES LESS THAN (to_days('1995-01-01')),
-> PARTITION p1 VALUES LESS THAN (to_days('1996-01-01')) ,
-> PARTITION p2 VALUES LESS THAN (to_days('1997-01-01')) ,
-> PARTITION p3 VALUES LESS THAN (to_days('1998-01-01')) ,
-> PARTITION p4 VALUES LESS THAN (to_days('1999-01-01')) ,
-> PARTITION p5 VALUES LESS THAN (to_days('2000-01-01')) ,
-> PARTITION p6 VALUES LESS THAN (to_days('2001-01-01')) ,
-> PARTITION p7 VALUES LESS THAN (to_days('2002-01-01')) ,
-> PARTITION p8 VALUES LESS THAN (to_days('2003-01-01')) ,
-> PARTITION p9 VALUES LESS THAN (to_days('2004-01-01')) ,
-> PARTITION p10 VALUES LESS THAN (to_days('2010-01-01')),
-> PARTITION p11 VALUES LESS THAN MAXVALUE )
Query OK, 0 rows affected (0.00 sec)
以to_days()函数分区成功,我们分析一下看看:
mysql> explain partitions
-> select count(*) from part_date3 where
-> c3> date '1995-01-01' and c3 <date '1995-12-31'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: part_date3
partitions: p1
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 808431
Extra: Using where
1 row in set (0.00 sec)
可以看到,mysql优化器这次不负众望,仅仅在p1分区进行查询。在这种情况下查询,真的能够带来提升查询效率么?下面分别对这次建立的part_date3和之前分区失败的part_date1做一个查询对比:
mysql> select count(*) from part_date3 where
-> c3> date '1995-01-01' and c3 <date '1995-12-31'
+----------+
| count(*) |
+----------+
| 805114 |
+----------+
1 row in set (4.11 sec)
mysql> select count(*) from part_date1 where
-> c3> date '1995-01-01' and c3 <date '1995-12-31'
+----------+
| count(*) |
+----------+
| 805114 |
+----------+
1 row in set (40.33 sec)
可以看到,分区正确的话query花费时间为4秒,而分区错误则花费时间40秒(相当于没有分区),效率有90%的提升!所以我们千万要正确的使用分区功能,分区后务必用explain验证,这样才能获得真正的性能提升。
注意:
在mysql5.1中建立分区表的语句中,只能包含下列函数:
ABS()
CEILING() and FLOOR() (在使用这2个函数的建立分区表的前提是使用函数的分区键是INT类型),例如
mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST( FLOOR(c) )( -> PARTITION p0 VALUES IN (1,3,5), -> PARTITION p1 VALUES IN (2,4,6) -> ) ERROR 1491 (HY000): The PARTITION function returns the wrong type mysql> CREATE TABLE t (c int) PARTITION BY LIST( FLOOR(c) )( -> PARTITION p0 VALUES IN (1,3,5), -> PARTITION p1 VALUES IN (2,4,6) -> ) Query OK, 0 rows affected (0.01 sec)DAY()
DAYOFMONTH()
DAYOFWEEK()
DAYOFYEAR()
DATEDIFF()
EXTRACT()
HOUR()
MICROSECOND()
MINUTE()
MOD()
MONTH()
QUARTER()
SECOND()
TIME_TO_SEC()
TO_DAYS()
WEEKDAY()
YEAR()
YEARWEEK()
当数据表中的数据量很大时,分区带来的效率提升才会显现出来。只有检索字段为分区字段时,分区带来的效率提升才会比较明显。因此, 分区字段的选择很重要 ,并且 业务逻辑要尽可能地根据分区字段做相应调整 (尽量使用分区字段作为查询条件)。
1、分区表对业务透明,只需要维护一个表的数据结构。
2、DML *** 作加锁仅影响 *** 作的分区,不会影响未访问分区。
3、通过分区交换快速将数据换入和换出分区表。
4、通过TRUNCATE *** 作快速清理特定分区数据。
5、通过强制分区仅访问特定分区数据,减少 *** 作影响。
6、通过大数据量分区能有效降低索引层数,提高查询性能。
1、创建表时指定分区
物理文件:
2、插入数据
3、查询 information_schema.partitions 表得到该表的分区信息
4、查询计划分析
5、添加分区
若报错:
6、修改/覆盖/合并分区
报错
所以需要添加pmax 分区,一同修改
7、删除分区
8、查询具体分区的下数据
MySQL分区的限制
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)