mysql数据库面试题(学生表_课程表_成绩表_教师表)

mysql数据库面试题(学生表_课程表_成绩表_教师表),第1张

Student(Sid,Sname,Sage,Ssex)学生表 Sid:学号 Sname:学生姓名 Sage:学生年龄 Ssex:学生性别 Course(Cid,Cname,Tid)课程表 Cid:课程编号 Cname:课程名称 Tid:教师编号 SC(Sid,Cid,score)成绩表 Sid:学号 Cid:课程编号 score:成绩 Teacher(Tid,Tname)教师表 Tid:教师编号: Tname:教师名字 1、插入数据 2、删除课程表所有数据 3、将学生表中的姓名 张三修改为张大山 或者 4、查询姓’李’的老师的个数: 5、查询所有课程成绩小于60的同学的学号、姓名: 6、查询没有学全所有课的同学的学号、姓名 7、查询平均成绩大于60分的同学的学号和平均成绩 8、查询学过“100”并且也学过编号“101”课程的同学的学号、姓名 9、查询“100”课程比“101”课程成绩高的所有学生的学号 10、查询课程编号“100”的成绩比课程编号“101”课程高的所有同学的学号、姓名 11、查询学过“鲁迅”老师所教的所有课的同学的学号、姓名 12、查询所有同学的学号、姓名、选课数、总成绩 13、查询至少有一门课与学号为“1”同学所学相同的同学的学号和姓名 14、把“SC”表中“鲁迅”老师教的课的成绩都更改为此课程的平均成绩, 错误 15、查询和“2”学号的同学学习的课程完全相同的其他同学学号和姓名 16、删除学习“鲁迅”老师课的SC表记录 17、向SC表中插入一些记录,这些记录要求符合以下条件:没有上过编号“003”课程的同学学号、002号课的平均成绩 18、查询各科成绩最高和最低的分:以如下的形式显示:课程ID,最高分,最低分 19、按各科平均成绩从低到高和及格率的百分数从高到低顺序 20、查询如下课程平均成绩和及格率的百分数(用”1行”显示): 数学(100),语文(101),英语(102) 22、查询不同老师所教不同课程平均分从高到低显示 23、查询如下课程成绩第3名到第6名的学生成绩单:数学(100),语文(101),英语(102) 23、统计下列各科成绩,各分数段人数:课程ID,课程名称,[100-85],[85-70],[70-60],[ 小于60] 24、查询学生平均成绩及其名次 25、查询各科成绩前三名的记录(不考虑成绩并列情况) 26、查询每门课程被选修的学生数 27、查询出只选修一门课程的全部学生的学号和姓名 28、查询男生、女生人数 29、查询姓“张”的学生名单 30、查询同名同姓的学生名单,并统计同名人数 31、1981年出生的学生名单(注:student表中sage列的类型是datetime) 32、查询平均成绩大于85的所有学生的学号、姓名和平均成绩 33、查询每门课程的平均成绩,结果按平均成绩升序排序,平均成绩相同时,按课程号降序排列 34、查询课程名称为“英语”,且分数低于60的学生名字和分数 35、查询所有学生的选课情况 36、查询任何一门课程成绩在70分以上的姓名、课程名称和分数 37、查询不及格的课程,并按课程号从大到小的排列 38、查询课程编号为“101”且课程成绩在80分以上的学生的学号和姓名 39、求选了课程的学生人数: 40、查询选修“鲁迅”老师所授课程的学生中,成绩最高的学生姓名及其成绩 41、检索至少选修两门课程的学生学号 42、查询全部学生都选修的课程的课程号和课程名(1.一个课程被全部的学生选修,2.所有的学生选择的所有课程) 43、查询没学过“鲁迅”老师讲授的任一门课程的学生姓名 44、查询两门以上不及格课程的同学的学号及其平均成绩 45、检索“101”课程分数小于60,按分数降序排列的同学学号 46、删除“2”同学的“101”课程的成绩

篇幅所限本文只写了MySQL25题,像其他的Redis,SSM框架,算法,计网等技术栈的面试题后面会持续更新,个人整理的1000余道面试八股文会放在文末给大家白嫖,最近有面试需要刷题的同学可以直接翻到文末领取。

如果表使用自增主键,那么每次插入新的记录,记录就会顺序添加到当前索引节点的后续位置,当一页写满,就会自动开辟一个新的页。如果使用非自增主键(如果身份z号或学号等),由于每次插入主键的值近似于随机,因此每次新纪录都要被插到现有索引页得中间某个位置, 频繁的移动、分页 *** 作造成了大量的碎片,得到了不够紧凑的索引结构,后续不得不通过OPTIMIZE TABLE(optimize table)来重建表并优化填充页面。

Server层按顺序执行sql的步骤为:

简单概括:

可以分为服务层和存储引擎层两部分,其中:

服务层包括连接器、查询缓存、分析器、优化器、执行器等 ,涵盖MySQL的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。

存储引擎层负责数据的存储和提取 。其架构模式是插件式的,支持InnoDB、MyISAM、Memory等多个存储引擎。现在最常用的存储引擎是InnoDB,它从MySQL 5.5.5版本开始成为了默认的存储引擎。

Drop、Delete、Truncate都表示删除,但是三者有一些差别:

Delete 用来删除表的全部或者一部分数据行,执行Delete之后,用户需要提交(commmit)或者回滚(rollback)来执行删除或者撤销删除,会触发这个表上所有的delete触发器。

Truncate 删除表中的所有数据,这个 *** 作不能回滚,也不会触发这个表上的触发器,TRUNCATE比Delete更快,占用的空间更小。

Drop 命令从数据库中删除表,所有的数据行,索引和权限也会被删除,所有的DML触发器也不会被触发,这个命令也不能回滚。

因此,在不再需要一张表的时候,用Drop;在想删除部分数据行时候,用Delete;在保留表而删除所有数据的时候用Truncate。

隔离级别脏读不可重复读幻影读 READ-UNCOMMITTED 未提交读READ-COMMITTED 提交读REPEATABLE-READ 重复读SERIALIZABLE 可串行化读

MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ (可重读)

这里需要注意的是 :与 SQL 标准不同的地方在于InnoDB 存储引擎在 REPEATABLE-READ(可重读)事务隔离级别 下使用的是 Next-Key Lock 锁 算法,因此可以避免幻读的产生,这与其他数据库系统(如 SQL Server)是不同的。所以 说InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读) 已经可以完全保证事务的隔离性要 求,即达到了 SQL标准的SERIALIZABLE(可串行化)隔离级别。

因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是READ-COMMITTED(读取提交内 容):,但是你要知道的是InnoDB 存储引擎默认使用 REPEATABLE-READ(可重读)并不会有任何性能损失

InnoDB 存储引擎在分布式事务 的情况下一般会用到SERIALIZABLE(可串行化)隔离级别。

主要原因:B+树只要遍历叶子节点就可以实现整棵树的遍历,而且在数据库中基于范围的查询是非常频繁的,而B树只能中序遍历所有节点,效率太低。

文件与数据库都是需要较大的存储,也就是说,它们都不可能全部存储在内存中,故需要存储到磁盘上。而所谓索引,则为了数据的快速定位与查找,那么索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数,因此B+树相比B树更为合适。数据库系统巧妙利用了局部性原理与磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入,而红黑树这种结构,高度明显要深的多,并且由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性。

最重要的是,B+树还有一个最大的好处:方便扫库。

B树必须用中序遍历的方法按序扫库,而B+树直接从叶子结点挨个扫一遍就完了,B+树支持range-query非常方便,而B树不支持,这是数据库选用B+树的最主要原因。

B+树查找效率更加稳定,B树有可能在中间节点找到数据,稳定性不够。

B+tree的磁盘读写代价更低:B+tree的内部结点并没有指向关键字具体信息的指针(红色部分),因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一块盘中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多,相对来说IO读写次数也就降低了;

B+tree的查询效率更加稳定:由于内部结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引,所以,任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当;

视图是一种虚拟的表,通常是有一个表或者多个表的行或列的子集,具有和物理表相同的功能 游标是对查询出来的结果集作为一个单元来有效的处理。一般不使用游标,但是需要逐条处理数据的时候,游标显得十分重要。

而在 MySQL 中,恢复机制是通过回滚日志(undo log)实现的,所有事务进行的修改都会先记录到这个回滚日志中,然后在对数据库中的对应行进行写入。当事务已经被提交之后,就无法再次回滚了。

回滚日志作用:1)能够在发生错误或者用户执行 ROLLBACK 时提供回滚相关的信息 2) 在整个系统发生崩溃、数据库进程直接被杀死后,当用户再次启动数据库进程时,还能够立刻通过查询回滚日志将之前未完成的事务进行回滚,这也就需要回滚日志必须先于数据持久化到磁盘上,是我们需要先写日志后写数据库的主要原因。

InnoDB

MyISAM

总结

数据库并发会带来脏读、幻读、丢弃更改、不可重复读这四个常见问题,其中:

脏读 :在第一个修改事务和读取事务进行的时候,读取事务读到的数据为100,这是修改之后的数据,但是之后该事务满足一致性等特性而做了回滚 *** 作,那么读取事务得到的结果就是脏数据了。

幻读 :一般是T1在某个范围内进行修改 *** 作(增加或者删除),而T2读取该范围导致读到的数据是修改之间的了,强调范围。

丢弃修改 :两个写事务T1 T2同时对A=0进行递增 *** 作,结果T2覆盖T1,导致最终结果是1 而不是2,事务被覆盖

不可重复读 :T2 读取一个数据,然后T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和第一次读取的结果不同。

第一个事务首先读取var变量为50,接着准备更新为100的时,并未提交,第二个事务已经读取var为100,此时第一个事务做了回滚。最终第二个事务读取的var和数据库的var不一样。

T1 读取某个范围的数据,T2 在这个范围内插入新的数据,T1 再次读取这个范围的数据,此时读取的结果和和第一次读取的结果不同。

T1 和 T2 两个事务都对一个数据进行修改,T1 先修改,T2 随后修改,T2 的修改覆盖了 T1 的修改。例如:事务1读取某表中的数据A=50,事务2也读取A=50,事务1修改A=A+50,事务2也修改A=A+50,最终结果A=100,事务1的修改被丢失。

T2 读取一个数据,T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和第一次读取的结果不同。

悲观锁,先获取锁,再进行业务 *** 作,一般就是利用类似 SELECT … FOR UPDATE 这样的语句,对数据加锁,避免其他事务意外修改数据。当数据库执行SELECT … FOR UPDATE时会获取被select中的数据行的行锁,select for update获取的行锁会在当前事务结束时自动释放,因此必须在事务中使用。

乐观锁,先进行业务 *** 作,只在最后实际更新数据时进行检查数据是否被更新过。Java 并发包中的 AtomicFieldUpdater 类似,也是利用 CAS 机制,并不会对数据加锁,而是通过对比数据的时间戳或者版本号,来实现乐观锁需要的版本判断。

分库与分表的目的在于,减小数据库的单库单表负担,提高查询性能,缩短查询时间。

通过分表 ,可以减少数据库的单表负担,将压力分散到不同的表上,同时因为不同的表上的数据量少了,起到提高查询性能,缩短查询时间的作用,此外,可以很大的缓解表锁的问题。分表策略可以归纳为垂直拆分和水平拆分:

水平分表 :取模分表就属于随机分表,而时间维度分表则属于连续分表。如何设计好垂直拆分,我的建议:将不常用的字段单独拆分到另外一张扩展表. 将大文本的字段单独拆分到另外一张扩展表, 将不经常修改的字段放在同一张表中,将经常改变的字段放在另一张表中。对于海量用户场景,可以考虑取模分表,数据相对比较均匀,不容易出现热点和并发访问的瓶颈。

库内分表 ,仅仅是解决了单表数据过大的问题,但并没有把单表的数据分散到不同的物理机上,因此并不能减轻 MySQL 服务器的压力,仍然存在同一个物理机上的资源竞争和瓶颈,包括 CPU、内存、磁盘 IO、网络带宽等。

分库与分表带来的分布式困境与应对之策 数据迁移与扩容问题----一般做法是通过程序先读出数据,然后按照指定的分表策略再将数据写入到各个分表中。分页与排序问题----需要在不同的分表中将数据进行排序并返回,并将不同分表返回的结果集进行汇总和再次排序,最后再返回给用户。

不可重复读的重点是修改,幻读的重点在于新增或者删除。

视图是虚拟的表,与包含数据的表不一样,视图只包含使用时动态检索数据的查询;不包含任何列或数据。使用视图可以简化复杂的 sql *** 作,隐藏具体的细节,保护数据;视图创建后,可以使用与表相同的方式利用它们。

视图不能被索引,也不能有关联的触发器或默认值,如果视图本身内有order by 则对视图再次order by将被覆盖。

创建视图:create view xxx as xxxx

对于某些视图比如未使用联结子查询分组聚集函数Distinct Union等,是可以对其更新的,对视图的更新将对基表进行更新;但是视图主要用于简化检索,保护数据,并不用于更新,而且大部分视图都不可以更新。

B+tree的磁盘读写代价更低,B+tree的查询效率更加稳定 数据库索引采用B+树而不是B树的主要原因:B+树只要遍历叶子节点就可以实现整棵树的遍历,而且在数据库中基于范围的查询是非常频繁的,而B树只能中序遍历所有节点,效率太低。

B+树的特点

在最频繁使用的、用以缩小查询范围的字段,需要排序的字段上建立索引。不宜:1)对于查询中很少涉及的列或者重复值比较多的列 2)对于一些特殊的数据类型,不宜建立索引,比如文本字段(text)等。

如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称 之为“覆盖索引”。

我们知道在InnoDB存储引 擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次,这样就 会比较慢。覆盖索引就是把要查询出的列和索引是对应的,不做回表 *** 作!

举例

学号姓名性别年龄系别专业 20020612李辉男20计算机软件开发 20060613张明男18计算机软件开发 20060614王小玉女19物理力学 20060615李淑华女17生物动物学 20060616赵静男21化学食品化学 20060617赵静女20生物植物学

主键为候选键的子集,候选键为超键的子集,而外键的确定是相对于主键的。

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步 *** 作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新 *** 作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select * from t1 where f1 = 20

B:

select * from t1 where f1 = 30

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql>desc t1+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

表记录数:

mysql>select count(*) from t1+----------+| count(*) |+----------+|    32768 |+----------+1 row in set (0.01 sec)

这里我们两条经典的SQL:

SQL C:

select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2

SQL D:

select * from t1 where rank1 =100  and rank2 =100  and rank3 =100

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为3243.65。

mysql>explain  format=json select * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "3243.65"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "0.36",      "cost_info": {        "read_cost": "3232.07",        "eval_cost": "11.58",        "prefix_cost": "3243.65",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。

mysql>explain  format=json select /*+ index_merge(t1) */ * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "441.09"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "100.00",      "cost_info": {        "read_cost": "330.79",        "eval_cost": "110.30",        "prefix_cost": "441.09",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们再看下SQL D的计划:

不加HINT,

mysql>explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "534.34"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "0.07",      "cost_info": {        "read_cost": "478.84",        "eval_cost": "0.04",        "prefix_cost": "534.34",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

加了HINT,

mysql>explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "5.23"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info": {        "read_cost": "5.13",        "eval_cost": "0.10",        "prefix_cost": "5.23",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7214225.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-03
下一篇 2023-04-03

发表评论

登录后才能评论

评论列表(0条)

保存