一、B树的起源
B树,最早是由德国计算机科学家Rudolf Bayer等人于1972年在论文 《Organization and Maintenance of Large Ordered Indexes》提出的,不过我去看了看原文,发现作者也没有解释为什么就叫B-trees了,所以把B树的B,简单地解释为Balanced或者Binary都不是特别严谨,也许作者就是取其名字Bayer的首字母命名的也说不定啊……
二、B树长啥样
还是直接看图比较清楚,图中所示,B树事实上是一种平衡的多叉查找树,也就是说最多可以开m个叉(m>=2),我们称之为m阶b树,为了体现本博客的良心之处,不同于其他地方都能看到2阶B树,这里特意画了一棵5阶B树 。
总的来说,m阶B树满足以下条件:
每个节点至多可以拥有m棵子树
根节点,只有至少有2个节点(要么极端情况,就是一棵树就一个根节点,单细胞生物,即是根,也是叶,也是树)
非根非叶的节点至少有的Ceil(m/2)个子树(Ceil表示向上取整,图中5阶B树,每个节点至少有3个子树,也就是至少有3个叉)
非叶节点中的信息包括[n,A0,K1,A1,K2,A2,…,Kn,An],,其中n表示该节点中保存的关键字个数,K为关键字且Ki<Ki+1,A为指向子树根节点的指针
从根到叶子的每一条路径都有相同的长度,也就是说,叶子节在相同的层,并且这些节点不带信息,实际上这些节点就表示找不到指定的值,也就是指向这些节点的指针为空
B树的查询过程和二叉排序树比较类似,从根节点依次比较每个结点,因为每个节点中的关键字和左右子树都是有序的,所以只要比较节点中的关键字,或者沿着指针就能很快地找到指定的关键字,如果查找失败,则会返回叶子节点,即空指针
例如查询图中字母表中的K
从根节点P开始,K的位置在P之前,进入左侧指针
左子树中,依次比较C、F、J、M,发现K在J和M之间
沿着J和M之间的指针,继续访问子树,并依次进行比较,发现第一个关键字K即为指定查找的值
三、Plus版——B+树
作为B树的加强版,B+树与B树的差异在于:
有n棵子树的节点含有n个关键字(也有认为是n-1个关键字)
所有的叶子节点包含了全部的关键字,及指向含这些关键字记录的指针,且叶子节点本身根据关键字自小而大顺序连接
非叶子节点可以看成索引部分,节点中仅含有其子树(根节点)中的最大(或最小)关键字
请点击输入图片描述
B+树的查找过程,与B树类似,只不过查找时,如果在非叶子节点上的关键字等于给定值,并不终止,而是继续沿着指针直到叶子节点位置。因此在B+树,不管查找成功与否,每次查找都是走了一条从根到叶子节点的路径
谈到索引,大家并不陌生。索引本身是一种数据结构,存在的目的主要是为了缩短数据检索的时间,最大程度减少磁盘 IO。
任何有数据的场景几乎都有索引,比如手机通讯录、文件系统(ext4\xfs\ntfs)、数据库系统(MySQL\Oracle)。数据库系统和文件系统一般都采用 B+ 树来存储索引信息,B+ 树兼顾写和读的性能,最极端时检索复杂度为 O(logN),其中 N 指的是节点数量,logN 表示对磁盘 IO 扫描的总次数。
MySQL 支持的索引结构有四种:B+ 树,R 树,HASH,FULLTEXT。
B 树是一种多叉的 AVL 树。B-Tree 减少了 AVL 数的高度,增加了每个节点的 KEY 数量。
B 树的特性:(m 为阶数:结点的孩子个数最大值)
1. 树中每个节点最多含有 m 个孩子节点 (m>=2);
2. 除根节点和叶子结点外,其他节点的孩子数量 >=ceil(m / 2);
3. 若根节点不是叶子结点,最少有两个孩子
特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点;
4. 每个非叶子结点中包含有 n 个关键字信息:(n,P0,K1,P1,K2,P2,......,Kn,Pn) 其中:
Ki (i=1...n) 为关键字,且关键字按顺序升序排序 K(i-1)<Ki
Pi 为指向儿子节点的指针,且指针 P(i-1) 指向的儿子节点里所有关键字均小于 Ki,但都大于 K(i-1)
关键字的个数 n 必须满足:[ceil(m / 2)-1]<= n <= m-1
如果一个结点有 n 个关键字,那么该结点有 n+1 个分支。这 n+1 个关键字按照递增顺序排列
所有叶子结点都出现在同一层,是所有遍历的终点位置
文就是对这两种数据结构做简单的介绍。1. B-Tree
B-Tree不是“B减树”,而是“B树”。
这里参考了严蔚敏《数据结构》对B-Tree的定义:
一棵m阶的B-Tree,或者为空树,或者满足下列特性:
1.树中每个结点至多有m棵子树;
2.若根结点不是叶子结点,则至少有两棵子树;
3.除根节点之外的所有非终端结点至少有[m/2]棵子树;
4.所有非终端结点中包含下列信息数据:
(n,A0,K1,A1,K2,A2……Kn,An)
其中,n为关键字的数目,K(i)为关键字,且K(i) <K(i+1), Ai为指向子树根结点的指针,且指针A(i-1)所指子树中所有结点的关键字均小于Ki,Ai所指子树中所有结点的关键字均大于Ki;
5.所有叶子结点都出现在同一层次上;
下面通过一个例子解释一下B-Tree的查找过程。
这是一棵4阶的B-Tree,深度为4。
假如在该图中查找关键字47,首先从根结点开始,根据根结点指针t找到*a结点,因为47大于 *a 结点的关键字35,所以会去A1指针指向的 *c结点继续寻找,因为 *c的关键字 43 <要查找的47 <*c结点的关键字78,所以去 *c结点A1指针指向的 *g结点去寻找,结果在 *g结点中找到了关键字47,查找成功。
2. B+Tree
不同的存储引擎可能使用不同的数据结构存储,InnoDB使用的是B+Tree;那什么是B+Tree呢?
B+Tree是应文件系统所需而出的一种B-Tree的变型树,一棵m阶的B+树和m阶的B-树的差异在于:
1.有n棵子树的结点中含有n个关键字;
2.所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字的记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接;
3.所有的非终端结点可以看成是索引部分,结点中仅含有其子树(根结点)中的最大(或最小)关键字;
还是通过一个例子来说明。
这个例子中,所有非终端结点仅含有子树中最大的关键字。
因为叶子节点本身依据关键字的大小自小而大顺序链接,所以可以从最小关键字起顺序查找。也可以从根结点开始,进行随机查找。
在B+树中随机差找和在B-树中类似,以上图为例。假设要查找关键字51,现在根节点中比较,发现51<59,因为这里使用的是非终端结点的关键字是子树中最大的关键字,所以进入最大值为59的子结点(15\44\59)中查找,同理,因为44<51<59,所以进入P3指向的结点(51\59)中查找,然后命中关键字51,因为此结点(51\59)是叶子结点,所以查找终止,该结点包含指向数据的指针。
3.索引如何在B+Tree中组织数据存储
假设有如下表:
对于表中的每一行数据,索引中包含了last_name、first_name和dob列的值,下图展示索引是如何组织数据存储的:
索引对多个值进行排序的依据是定义索引时列的顺序。
(Allen Cuba 1960-01-01)结点左侧的指针指向[?,Allen Cuba 1960-01-01)的叶子页,(Allen Cuba 1960-01-01)和(Astaire,Angelina,1980-03-04)之间的指针指向[Allen Cuba 1960-01-01,Astaire Angelina 1980-03-04)的叶子页,以此类推。总之,每个指针指向的结点中的最小值就是该指针左侧的的值。
这种存储结构也说明了在定义多个列组成的多列索引中,为什么需要把重复率最低的列放到最左侧,因为这会减少比较的次数,查找起来更加高效。
4.索引为什么选用B树这种数据结构?
因为使用B树查找时,所用的磁盘IO *** 作次数比平衡二叉树更少,效率也更高。
为什么使用B树查找所用的磁盘IO *** 作次数比平衡二叉树更少?
大规模数据存储中,树节点存储的元素数量是有限的(如果元素数量非常多的话,查找就退化成节点内部的线性查找了),这样导致二叉查找树结构由于树的高度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下。那么我们就需要减少树的高度以提高查找效率。而平衡多路查找树结构B树就满足这样的要求。B树的各种 *** 作能使B树保持较低的高度,从而达到有效减少磁盘IO *** 作次数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)