MySQL B+树索引和哈希索引的区别

MySQL B+树索引和哈希索引的区别,第1张

MySQL B+树索引和哈希索引的区别:

B+树是一个平衡的多叉树,从根节点到每个叶子节点的高度差值不超过1,而且同层级的节点间有指针相互链接。

在B+树上的常规检索,从根节点到叶子节点的搜索效率基本相当,不会出现大幅波动,而且基于索引的顺序扫描时,也可以利用双向指针快速左右移动,效率非常高。

因此,B+树索引被广泛应用于数据库、文件系统等场景。顺便说一下,xfs文件系统比ext3/ext4效率高很多的原因之一就是,它的文件及目录索引结构全部采用B+树索引,而ext3/ext4的文件目录结构则采用Linked list, hashed B-tree、Extents/Bitmap等索引数据结构,因此在高I/O压力下,其IOPS能力不如xfs。

哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。

B+树索引和哈希索引的明显区别是:

如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;

从示意图中也能看到,如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;

同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);

哈希索引也不支持多列联合索引的最左匹配规则;

B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。

面试时候经常会被问到mysql的索引结构,B+树相较二叉树,红黑树的优势等问题,接下来就分析下这些问题。

首先,让我们先看一张图:

从图中可以看到,我们为 user 表(用户信息表)建立了一个二叉查找树的索引。

图中的圆为二叉查找树的节点,节点中存储了键(key)和数据(data)。键对应 user 表中的 id,数据对应 user 表中的行数据。

二叉查找树的特点就是任何节点的左子节点的键值都小于当前节点的键值,右子节点的键值都大于当前节点的键值。顶端的节点我们称为根节点,没有子节点的节点我们称之为叶节点。

如果我们需要查找 id=12 的用户信息,利用我们创建的二叉查找树索引,查找流程如下:

利用二叉查找树我们只需要 3 次即可找到匹配的数据。如果在表中一条条的查找的话,我们需要 6 次才能找到。

上面我们讲解了利用二叉查找树可以快速的找到数据。但是,如果上面的二叉查找树是这样的构造:

这个时候可以看到我们的二叉查找树变成了一个链表。如果我们需要查找 id=17 的用户信息,我们需要查找 7 次,也就相当于全表扫描了。 导致这个现象的原因其实是二叉查找树变得不平衡了,也就是高度太高了,从而导致查找效率的不稳定。为了解决这个问题,我们需要保证二叉查找树一直保持平衡,就需要用到平衡二叉树了。 平衡二叉树又称 AVL 树,在满足二叉查找树特性的基础上,要求每个节点的左右子树的高度差不能超过 1。

下面是平衡二叉树和非平衡二叉树的对比:

由平衡二叉树的构造我们可以发现第一张图中的二叉树其实就是一棵平衡二叉树。

平衡二叉树保证了树的构造是平衡的,当我们插入或删除数据导致不满足平衡二叉树不平衡时,平衡二叉树会进行调整树上的节点来保持平衡。具体的调整方式这里就不介绍了。平衡二叉树相比于二叉查找树来说,查找效率更稳定,总体的查找速度也更快。

因为内存的易失性。一般情况下,我们都会选择将 user 表中的数据和索引存储在磁盘这种外围设备中。但是和内存相比,从磁盘中读取数据的速度会慢上百倍千倍甚至万倍,所以,我们应当尽量减少从磁盘中读取数据的次数。另外,从磁盘中读取数据时,都是按照磁盘块来读取的,并不是一条一条的读。如果我们能把尽量多的数据放进磁盘块中,那一次磁盘读取 *** 作就会读取更多数据,那我们查找数据的时间也会大幅度降低。如果我们用树这种数据结构作为索引的数据结构,那我们每查找一次数据就需要从磁盘中读取一个节点,也就是我们说的一个磁盘块。我们都知道平衡二叉树可是每个节点只存储一个键值和数据的。那说明什么?说明每个磁盘块仅仅存储一个键值和数据!那如果我们要存储海量的数据呢?

可以想象到二叉树的节点将会非常多,高度也会极其高,我们查找数据时也会进行很多次磁盘 IO,我们查找数据的效率将会极低!

为了解决平衡二叉树的这个弊端,我们应该寻找一种单个节点可以存储多个键值和数据的平衡树。也就是我们接下来要说的 B 树。

B 树(Balance Tree)即为平衡树的意思,下图即是一棵 B 树:

图中的 p 节点为指向子节点的指针,二叉查找树和平衡二叉树其实也有,因为图的美观性,被省略了。

图中的每个节点称为页,页就是我们上面说的磁盘块,在 MySQL 中数据读取的基本单位都是页,所以我们这里叫做页更符合 MySQL 中索引的底层数据结构。

从上图可以看出,B 树相对于平衡二叉树,每个节点存储了更多的键值(key)和数据(data),并且每个节点拥有更多的子节点,子节点的个数一般称为阶,上述图中的 B 树为 3 阶 B 树,高度也会很低。

基于这个特性,B 树查找数据读取磁盘的次数将会很少,数据的查找效率也会比平衡二叉树高很多。

假如我们要查找 id=28 的用户信息,那么我们在上图 B 树中查找的流程如下:

B+ 树是对 B 树的进一步优化。让我们先来看下 B+ 树的结构图:

根据上图我们来看下 B+ 树和 B 树有什么不同:

通过上图可以看到,在 InnoDB 中,我们通过数据页之间通过双向链表连接以及叶子节点中数据之间通过单向链表连接的方式可以找到表中所有的数据。

MyISAM 中的 B+ 树索引实现与 InnoDB 中的略有不同。在 MyISAM 中,B+ 树索引的叶子节点并不存储数据,而是存储数据的文件地址。

摘自: http://www.liuzk.com/410.html


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7300971.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-04
下一篇 2023-04-04

发表评论

登录后才能评论

评论列表(0条)

保存