where(条件查询)、having(筛选)、group by(分组)、order by(排序)、limit(限制结果数)
1、where常用运算符:
比较运算符
>, <,= , != (<>),>= , <=
in(v1,v2..vn)
between v1 and v2在v1至v2之间(包含v1,v2)
逻辑运算符
not ( ! ) 逻辑非
or ( || )逻辑或
and ( &&) 逻辑与
where price>=3000 and price <= 5000 or price >=500 and price <=1000
取500-1000或者3000-5000的值
where price not between 3000 and 5000
不在3000与5000之间的值
模糊查询
like 像
通配符:
% 任意字符
_ 单个字符
where goods_name like '诺基亚%'
where goods_name like '诺基亚N__'
2、group by 分组
一般情况下group需与统计函数(聚合函数)一起使用才有意义
如:select goods_id,goods_name,cat_id,max(shop_price) from goods group by cat_id
这里取出来的结果中的good_name是错误的!因为shop_price使用了max函数,那么它是取最大的,而语句中使用了group by 分组,那么goods_name并没有使用聚合函数,它只是cat_id下的第一个商品,并不会因为shop_price改变而改变
mysql中的五种统计函数:
(1)max:求最大值
select max(goods_price) from goods
这里会取出最大的价格的值,只有值
#查询每个栏目下价格最高的
select cat_id,max(goods_price) from goos group by cat_id
#查出价格最高的商品编号
select goods_id,max(goods_price) from goods group by goods_id
(2)min:求最小值
(3)sum:求总数和
#求商品库存总和
select sum(goods_number) from goods
(4)avg:求平均值
#求每个栏目的商品平均价格
select cat_id,avg(goods_price) from goods group by cat_id
(5)count:求总行数
#求每个栏目下商品种类
select cat_id,count(*) from goods group by cat_id
###要把每个字段名当成变量来理解,它可以进行运算###
例:查询本店每个商品价格比市场价低多少;
select goods_id,goods_name,goods_price-market_price from goods
查询每个栏目下面积压的货款
select cat_id,sum(goods_price*goods_number) from goods group by cat_id
###可以用as来给计算结果取个别名###
select cat_id,sum(goods_price * goods_number) as hk from goods group by cat_id
不仅列名可以取别名,表单也可以取别名
3、having 与where 的异同点
having与where类似,可以筛选数据,where后的表达式怎么写,having后就怎么写
where针对表中的列发挥作用,查询数据
having对查询结果中的列发挥作用,筛选数据
#查询本店商品价格比市场价低多少钱,输出低200元以上的商品
select goods_id,good_name,market_price - shop_price as s from goods having s>200
//这里不能用where因为s是查询结果,而where只能对表中的字段名筛选
如果用where的话则是:
select goods_id,goods_name from goods where market_price - shop_price >200
#同时使用where与having
select cat_id,goods_name,market_price - shop_price as s from goods where cat_id = 3 having s >200
#查询积压货款超过2万元的栏目,以及该栏目积压的货款
select cat_id,sum(shop_price * goods_number) as t from goods group by cat_id having s >20000
#查询两门及两门以上科目不及格的学生的平均分
思路:
#先计算所有学生的平均分
select name,avg(score) as pj from stu group by name
#查出所有学生的挂科情况
select name,score<60 from stu
#这里score<60是判断语句,所以结果为真或假,mysql中真为1假为0
#查出两门及两门以上不及格的学生
select name,sum(score<60) as gk from stu group by name having gk >1
#综合结果
select name,sum(score<60) as gk,avg(score) as pj from stu group by name having gk >1
4、order by
(1) order by price //默认升序排列
(2)order by price desc //降序排列
(3)order by price asc //升序排列,与默认一样
(4)order by rand() //随机排列,效率不高
#按栏目号升序排列,每个栏目下的商品价格降序排列
select * from goods where cat_id !=2 order by cat_id,price desc
5、limit
limit [offset,] N
offset 偏移量,可选,不写则相当于limit 0,N
N 取出条目
#取价格第4-6高的商品
select good_id,goods_name,goods_price from goods order by good_price desc limit 3,3
###查询每个栏目下最贵的商品
思路:
#先对每个栏目下的商品价格排序
select cat_id,goods_id,goods_name,shop_price from goods order by cat_id,shop_price desc
#上面的查询结果中每个栏目的第一行的商品就是最贵的商品
#把上面的查询结果理解为一个临时表[存在于内存中]【子查询】
#再从临时表中选出每个栏目最贵的商品
select * from (select goods_id,goods_name,cat_id,shop_price from goods order by cat_id,shop_price desc) as t group by cat_id
#这里使用group by cat_id是因为临时表中每个栏目的第一个商品就是最贵的商品,而group by前面没有使用聚合函数,所以默认就取每个分组的第一行数据,这里以cat_id分组
良好的理解模型:
1、where后面的表达式,把表达式放在每一行中,看是否成立
2、字段(列),理解为变量,可以进行运算(算术运算和逻辑运算)
3、 取出结果可以理解成一张临时表
二、mysql子查询
1、where型子查询
(把内层查询结果当作外层查询的比较条件)
#不用order by 来查询最新的商品
select goods_id,goods_name from goods where goods_id = (select max(goods_id) from goods)
#取出每个栏目下最新的产品(goods_id唯一)
select cat_id,goods_id,goods_name from goods where goods_id in(select max(goods_id) from goods group by cat_id)
2、from型子查询
(把内层的查询结果供外层再次查询)
#用子查询查出挂科两门及以上的同学的平均成绩
思路:
#先查出哪些同学挂科两门以上
select name,count(*) as gk from stu where score <60 having gk >=2
#以上查询结果,我们只要名字就可以了,所以再取一次名字
select name from (select name,count(*) as gk from stu having gk >=2) as t
#找出这些同学了,那么再计算他们的平均分
select name,avg(score) from stu where name in (select name from (select name,count(*) as gk from stu having gk >=2) as t) group by name
3、exists型子查询
(把外层查询结果拿到内层,看内层的查询是否成立)
#查询哪些栏目下有商品,栏目表category,商品表goods
select cat_id,cat_name from category where exists(select * from goods where goods.cat_id = category.cat_id)
三、union的用法
(把两次或多次的查询结果合并起来,要求查询的列数一致,推荐查询的对应的列类型一致,可以查询多张表,多次查询语句时如果列名不一样,则取第一次的列名!如果不同的语句中取出的行的每个列的值都一样,那么结果将自动会去重复,如果不想去重复则要加all来声明,即union all)
## 现有表a如下
id num
a5
b10
c15
d10
表b如下
id num
b5
c10
d20
e99
求两个表中id相同的和
select id,sum(num) from (select * from ta union select * from tb) as tmp group by id
//以上查询结果在本例中的确能正确输出结果,但是,如果把tb中的b的值改为10以查询结果的b的值就是10了,因为ta中的b也是10,所以union后会被过滤掉一个重复的结果,这时就要用union all
select id,sum(num) from (select * from ta union all select * from tb) as tmp group by id
#取第4、5栏目的商品,按栏目升序排列,每个栏目的商品价格降序排列,用union完成
select goods_id,goods_name,cat_id,shop_price from goods where cat_id=4 union select goods_id,goods_name,cat_id,shop_price from goods where cat_id=5 order by cat_id,shop_price desc
【如果子句中有order by 需要用( ) 包起来,但是推荐在最后使用order by,即对最终合并后的结果来排序】
#取第3、4个栏目,每个栏目价格最高的前3个商品,结果按价格降序排列
(select goods_id,goods_name,cat_id,shop_price from goods where cat_id=3 order by shop_price desc limit 3) union (select goods_id,goods_name,cat_id,shop_price from goods where cat_id=4 order by shop_price desc limit 3) order by shop_price desc
四、左连接,右连接,内连接
现有表a有10条数据,表b有8条数据,那么表a与表b的笛尔卡积是多少?
select * from ta,tb //输出结果为8*10=80条
1、左连接
以左表为准,去右表找数据,如果没有匹配的数据,则以null补空位,所以输出结果数>=左表原数据数
语法:select n1,n2,n3 from ta left join tb on ta.n1= ta.n2 [这里on后面的表达式,不一定为=,也可以>,<等算术、逻辑运算符]【连接完成后,可以当成一张新表来看待,运用where等查询】
#取出价格最高的五个商品,并显示商品的分类名称
select goods_id,goods_name,goods.cat_id,cat_name,shop_price from goods left join category on goods.cat_id = category.cat_id order by shop_price desc limit 5
2、右连接
a left join b 等价于 b right join a
推荐使用左连接代替右连接
语法:select n1,n2,n3 from ta right join tb on ta.n1= ta.n2
3、内连接
查询结果是左右连接的交集,【即左右连接的结果去除null项后的并集(去除了重复项)】
mysql目前还不支持 外连接(即左右连接结果的并集,不去除null项)
语法:select n1,n2,n3 from ta inner join tb on ta.n1= ta.n2
总结:可以对同一张表连接多次,以分别取多次数据
1、InnoDB存储引擎Mysql版本>=5.5 默认的存储引擎,MySQL推荐使用的存储引擎。支持事务,行级锁定,外键约束。事务安全型存储引擎。更加注重数据的完整性和安全性。
存储格式 : 数据,索引集中存储,存储于同一个表空间文件中。
InnoDB的行锁模式及其加锁方法: InnoDB中有以下两种类型的行锁:共享锁(读锁: 允许事务对一条行数据进行读取)和 互斥锁(写锁: 允许事务对一条行数据进行删除或更新), 对于update,insert,delete语句,InnoDB会自动给设计的数据集加互斥锁,对于普通的select语句,InnoDB不会加任何锁。
InnoDB行锁的实现方式: InnoDB行锁是通过给索引上的索引项加锁来实现的,如果没有索引,InnoDB将通过隐藏的聚簇索引来对记录加锁。InnoDB这种行锁实现特点意味着:如果不通过索引条件检索数据,那么InnoDB将对表中的所有记录加锁,实际效果跟表锁一样。
(1)在不通过索引条件查询时,InnoDB会锁定表中的所有记录。
(2)Mysql的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果使用相同的索引键,是会出现冲突的。
(3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,但都是通过行锁来对数据加锁。
优点:
1、支持事务处理、ACID事务特性;
2、实现了SQL标准的四种隔离级别( 原子性( Atomicity )、一致性( Consistency )、隔离性(Isolation )和持续性(Durability ));
3、支持行级锁和外键约束;
4、可以利用事务日志进行数据恢复。
5、锁级别为行锁,行锁优点是适用于高并发的频繁表修改,高并发是性能优于 MyISAM。缺点是系统消耗较大。
6、索引不仅缓存自身,也缓存数据,相比 MyISAM 需要更大的内存。
缺点:
因为它没有保存表的行数,当使用COUNT统计时会扫描全表。
使用场景:
(1)可靠性要求比较高,或者要求事务;(2)表更新和查询都相当的频繁,并且表锁定的机会比较大的情况。
2、 MyISAM存储引擎
MySQL<= 5.5 MySQL默认的存储引擎。ISAM:Indexed Sequential Access Method(索引顺序存取方法)的缩写,是一种文件系统。擅长与处理,高速读与写。
功能:
(1)支持数据压缩存储,但压缩后的表变成了只读表,不可写;如果需要更新数据,则需要先解压后更新。
(2)支持表级锁定,不支持高并发;
(3)支持并发插入。写 *** 作中的插入 *** 作,不会阻塞读 *** 作(其他 *** 作);
优点:
1.高性能读取;
2.因为它保存了表的行数,当使用COUNT统计时不会扫描全表;
缺点:
1、锁级别为表锁,表锁优点是开销小,加锁快;缺点是锁粒度大,发生锁冲动概率较高,容纳并发能力低,这个引擎适合查询为主的业务。
2、此引擎不支持事务,也不支持外键。
3、INSERT和UPDATE *** 作需要锁定整个表;
使用场景:
(1)做很多count 的计算;(2)插入不频繁,查询非常频繁;(3)没有事务。
InnoDB和MyISAM一些细节上的差别:
1、InnoDB不支持FULLTEXT类型的索引,MySQL5.6之后已经支持(实验性)。
2、InnoDB中不保存表的 具体行数,也就是说,执行select count() from table时,InnoDB要扫描一遍整个表来计算有多少行,但是MyISAM只要简单的读出保存好的行数即可。注意的是,当count()语句包含 where条件时,两种表的 *** 作是一样的。
3、对于AUTO_INCREMENT类型的字段,InnoDB中必须包含只有该字段的索引,但是在MyISAM表中,可以和其他字段一起建立联合索引。
4、DELETE FROM table时,InnoDB不会重新建立表,而是一行一行的删除。
5、LOAD TABLE FROM MASTER *** 作对InnoDB是不起作用的,解决方法是首先把InnoDB表改成MyISAM表,导入数据后再改成InnoDB表,但是对于使用的额外的InnoDB特性(例如外键)的表不适用。
6、另外,InnoDB表的行锁也不是绝对的,如果在执行一个SQL语句时MySQL不能确定要扫描的范围,InnoDB表同样会锁全表。
1.索引概述
利用关键字,就是记录的部分数据(某个字段,某些字段,某个字段的一部分),建立与记录位置的对应关系,就是索引。索引的关键字一定是排序的。索引本质上是表字段的有序子集,它是提高查询速度最有效的方法。一个没有建立任何索引的表,就相当于一本没有目录的书,在每次查询时就会进行全表扫描,这样会导致查询效率极低、速度也极慢。如果建立索引,那么就好比一本添加的目录,通过目录的指引,迅速翻阅到指定的章节,提升的查询性能,节约了查询资源。
2.索引种类
从索引的定义方式和用途中来看:主键索引,唯一索引,普通索引,全文索引。
无论任何类型,都是通过建立关键字与位置的对应关系来实现的。索引是通过关键字找对应的记录的地址。
以上类型的差异:对索引关键字的要求不同。
关键字:记录的部分数据(某个字段,某些字段,某个字段的一部分)。
普通索引,index:对关键字没有要求。
唯一索引,unique index:要求关键字不能重复。同时增加唯一约束。
主键索引,primary key:要求关键字不能重复,也不能为NULL。同时增加主键约束。
全文索引,fulltext key:关键字的来源不是所有字段的数据,而是从字段中提取的特别关键词。
PS:这里主键索引和唯一索引的区别在于:主键索引不能为空值,唯一索引允许空值;主键索引在一张表内只能创建一个,唯一索引可以创建多个。主键索引肯定是唯一索引,但唯一索引不一定是主键索引。
3.索引原则
如果索引不遵循使用原则,则可能导致索引无效。
(1)列独立
如果需要某个字段上使用索引,则需要在字段参与的表达中,保证字段独立在一侧。否则索引不会用到索引, 例如这条sql就不会用到索引:select * from A where id+1=10
(2)左原则
Like:匹配模式必须要左边确定不能以通配符开头。例如:select * from A where name like '%小明%' ,不会用到索引,而select * from A where name like '小明%' 就可以用到索引(name字段有建立索引),如果业务上需要用到'%小明%'这种方式,有两种方法:1.可以考虑全文索引,但mysql的全文索引不支持中文;2.只查询索引列或主键列,例如:select name from A where name like '%小明%' 或 select id from A where name like '%小明%' 或 select id,name from A where name like '%小明%' 这三种情况都会用到name的索引
复合索引:一个索引关联多个字段,仅仅针对左边字段有效果,添加复合索引时,第一个字段很重要,只有包含第一个字段作为查询条件的情况才会使用复合索引(必须用到建索引时选择的第一个字段作为查询条件,其他字段的顺序无关),而且查询条件只能出现and拼接,不能用or,否则则无法使用索引.
(3)OR的使用
必须要保证 OR 两端的条件都存在可以用的索引,该查询才可以使用索引。
(4)MySQL智能选择
即使满足了上面说原则,MySQL也能弃用索引,例如:select * from A where id >1这里弃用索引的主要原因:查询即使使用索引,会导致出现大量的随机IO,相对于从数据记录的第一条遍历到最后一条的顺序IO开销,还要大。
4.索引的使用场景
(1)索引检索:检索数据时使用索引。
(2)索引排序: 如果order by 排序需要的字段上存在索引,则可能使用到索引。
(3)索引覆盖: 索引拥有的关键字内容,覆盖了查询所需要的全部数据,此时,就不需要在数据区获取数据,仅仅在索引区即可。覆盖就是直接在索引区获取内容,而不需要在数据区获取。例如: select name from A where name like '小明%'
建立索引索引时,不能仅仅考虑where检索,同时考虑其他的使用场景。(在所有的where字段上增加索引,就是不合理的)
5.前缀索引
前缀索引是建立索引关键字一种方案。通常会使用字段的整体作为索引关键字。有时,即使使用字段前部分数据,也可以去识别某些记录。就比如一个班级里,我要找王xx,假如姓王的只有1个人,那么就可以建一个关键字为'王'的前缀索引。语法:Index `index_name` (`index_field`(N))使用index_name前N个字符建立的索引。
6.索引失效
(1) 应尽量避免在 where 子句中使用 != 或 > *** 作符,否则将引擎放弃使用索引而进行全表扫描;
(2) 应尽量避免在 where 子句中使用 or 来连接条件,如果一个字段有索引,一个字段没有索引,将导致引擎放弃使用索引而进行全表扫描;
(3) 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描;
(4)应尽量避免在 where 子句中对字段进行表达式 *** 作,这将导致引擎放弃使用索引而进行全表扫描;如select id from t where num/2 = 100;
(5) 应尽量避免在where子句中对字段进行函数 *** 作,这将导致引擎放弃使用索引而进行全表扫描;如:select id from t where substring(name,1,3) = ’abc’ ;
(6)应尽量避免在where子句中对字段进行类型转换,这将导致引擎放弃使用索引而进行全表扫描; 如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,如select id from t where id = 1;如果id字段在表设计中是varchar类型,那么即使id列上存的是数字,在查询时也一定要用varchar去匹配,sql应改为select id from t where id = '1';
(7)应尽量避免在where子句中单独引用复合索引里非第一位置的索引;
join 的两种算法:BNL 和 NLJ
NLJ(Nested Loop Join)嵌套循环算法;以如下 SQL 为例:
select * from t1 join t2 on t1.a=t2.a
SQL 执行时内部流程是这样的:
1. 先从 t1(假设这里 t1 被选为驱动表)中取出一行数据 X;
2. 从 X 中取出关联字段 a 值,去 t2 中进行查找,满足条件的行取出;
3. 重复1、2步骤,直到表 t1 最后一行循环结束。
这就是一个嵌套循环的过程,如果在被驱动表上查找数据时可以使用索引,总的对比计算次数等于驱动表满足 where 条件的行数。假设这里 t1、t2都是1万行,则只需要 1万次计算,这里用到的是Index Nested-Loops Join(INLJ,基于索引的嵌套循环联接)。
如果 t1、t2 的 a 字段都没有索引,还按照上述的嵌套循环流程查找数据呢?每次在被驱动表上查找数据时都是一次全表扫描,要做1万次全表扫描,扫描行数等于 1万+1万*1万,这个效率很低,如果表行数更多,扫描行数动辄几百亿,所以优化器肯定不会使用这样的算法,而是选择 BNL 算法;
BNLJ(Block Nested Loop Join)块嵌套循环算法;
1. 把 t1 表(假设这里 t1 被选为驱动表)满足条件的数据全部取出放到线程的 join buffer 中;
2. 每次取 t2 表一行数据,去 joinbuffer 中进行查找,满足条件的行取出,直到表 t2 最后一行循环结束。
这个算法下,执行计划的 Extra 中会出现 Using join buffer(Block Nested Loop),t1、t2 都做了一次全表扫描,总的扫描行数等于 1万+1万。但是由于 joinbuffer 维护的是一个无序数组,每次在 joinbuffer 中查找都要遍历所有行,总的内存计算次数等于1万*1万。另外如果 joinbuffer 不够大放不下驱动表的数据,则要分多次执行上面的流程,会导致被驱动表也做多次全表扫描。
BNLJ相对于NLJ的优点在于,驱动层可以先将部分数据加载进buffer,这种方法的直接影响就是将大大减少内层循环的次数,提高join的效率。
例如:
如果内层循环有100条记录,外层循环也有100条记录,这样的话,每次外层循环先将10条记录放到buffer中,内层循环的100条记录每条与这个buffer中的10条记录进行匹配,只需要匹配内层循环总记录数次即可结束一次循环(在这里,即只需要匹配100次即可结束),然后将匹配成功的记录连接后放入结果集中,接着,外层循环继续向buffer中放入10条记录,同理进行匹配,并将成功的记录连接后放入结果集。后续循环以此类推,直到循环结束,将结果集发给client为止。
可以发现,若用NLJ,则需要100 * 100次才可结束,BNLJ则需要100 / block_size * 100 = 10 * 100次就可结束,大大减少了循环次数。
JOIN 按照功能大致分为如下三类:
JOIN、STRAIGHT_JOIN、INNER JOIN(内连接,或等值连接):取得两个表中存在连接匹配关系的记录。
LEFT JOIN(左连接):取得左表(table1)完全记录,即是右表(table2)并无对应匹配记录。
RIGHT JOIN(右连接):与 LEFT JOIN 相反,取得右表(table2)完全记录,即是左表(table1)并无匹配对应记录。
注意:mysql不支持Full join,不过可以通过UNION 关键字来合并 LEFT JOIN 与 RIGHT JOIN来模拟FULL join。
mysql 多表连接查询方式,因为mysql只支持NLJ算法,所以如果是小表驱动大表则效率更高;反之则效率下降;因此mysql对内连接或等值连接的方式做了一个优化,会去判断join表的数据行大小,然后取数据行小的表为驱动表。
INNER JOIN、JOIN、WHERE等值连接和STRAIGHT_JOIN都能表示内连接,那平时如何选择呢?一般情况下用INNER JOIN、JOIN或者WHERE等值连接,因为MySQL 会按照"小表驱动大表的策略"进行优化。当出现需要排序时,才考虑用STRAIGHT_JOIN指定某张表为驱动表。
两表JOIN优化
a.当无order by条件时,根据实际情况,使用left/right/inner join即可,根据explain优化 ;
b.当有order by条件时,如select * from a inner join b where 1=1 and other condition order by a.col;使用explain解释语句;
1)如果第一行的驱动表为a,则效率会非常高,无需优化;
2)否则,因为只能对驱动表字段直接排序的缘故,会出现using temporary,所以此时需要使用STRAIGHT_JOIN明确a为驱动表,来达到使用a.col上index的优化目的;或者使用left join且Where条件中不含b的过滤条件,此时的结果集为a的全集,而STRAIGHT_JOIN为inner join且使用a作为驱动表。注:使用STRAIGHT_JOIN虽然不会using temporary,但也不是一定就能提高效率,如果a表数据远远超过b表,那么有可能使用STRAIGHT_JOIN时比原来的sql效率更低,所以怎么使用STRAIGHT_JOIN,还是要视情况而定。
在使用left join(或right join)时,应该清楚的知道以下几点:
(1). on与 where的执行顺序
ON 条件(“A LEFT JOIN B ON 条件表达式”中的ON)用来决定如何从 B 表中检索数据行。如果 B 表中没有任何一行数据匹配 ON 的条件,将会额外生成一行所有列为 NULL 的数据,在匹配阶段 WHERE 子句的条件都不会被使用。仅在匹配阶段完成以后,WHERE 子句条件才会被使用。它将从匹配阶段产生的数据中检索过滤。
所以我们要注意:在使用Left (right) join的时候,一定要在先给出尽可能多的匹配满足条件,减少Where的执行。
(2).注意ON 子句和 WHERE 子句的不同
即使右表的数据不满足ON后面的条件,也会在结果集拼接一条为NULL的数据行,但WHERE后面的条件不一样,右表不满足WHERE的条件,左表关联的数据也会被过滤掉。
(3).尽量避免子查询,而用join
往往性能这玩意儿,更多时候体现在数据量比较大的时候,此时,我们应该避免复杂的子查询。
(1)in 和 not in 要慎用,如:select id from t where num in(1,2,3)对于连续的数值,能用 between 就不要用 in:select id from t where num between 1 and 3很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b)用下面的语句替换:select num from a where exists(select 1 from b where num=a.num)
(2)Update 语句,如果只更改1、2个字段,不要Update全部字段,否则频繁调用会引起明显的性能消耗,同时带来大量日志。
(3)join语句,MySQL里面的join是用小表去驱动大表,而由于MySQL join实现的原理就是做循环,比如left join就是对左边的数据进行循环去驱动右边的表,左边有m条记录匹配,右边有n条记录那么就是做m次循环,每次扫描n行数据,总扫面行数是m*n行数据。左边返回的结果集的大小就决定了循环的次数,故单纯的用小表去驱动大表不一定的正确的,小表的结果集可能也大于大表的结果集,所以写join的时候尽可能的先估计两张表的可能结果集,用小结果集去驱动大结果集.值得注意的是在使用left/right join的时候,从表的条件应写在on之后,主表应写在where之后.否则MySQL会当作普通的连表查询;
(4)select count(*) from table;这样不带任何条件的count会引起全表扫描,并且没有任何业务意义,是一定要杜绝的;
(5)select * from t 这种语句要尽量避免,使用具体的字段代替*,更有实际意义,需要什么字段就返回什么字段;
(6)数据量大的情况下,limit要慎用,因为使用limit m,n方式分页时,mysql每次都是查询前m+n条,然后舍弃前m条,所以m越大,偏移量越大,性能就越差。比如:select * from A limit 1000000,20这钟,查询效率就会非常低,当分页的页数大于一定的数量之后,就可以换种方式来分页:select * from A a join (select id from A limit 1000000,20) b on a.id=b.id
1:-- 1、查询"01"课程比"02"课程成绩高的学生的信息及课程分数
-- 3、查询平均成绩大于等于60分的同学的学生编号和学生姓名和平均成绩
-- 5、查询所有同学的学生编号、学生姓名、选课总数、所有课程的总成绩
-- 7、查询学过"张三"老师授课的同学的信息
方法二:
-- 8、查询没学过"张三"老师授课的同学的信息
-- 9、查询学过编号为"01"并且也学过编号为"02"的课程的同学的信息
-- 10、查询学过编号为"01"但是没有学过编号为"02"的课程的同学的信息
-- 15、查询两门及其以上不及格课程的同学的学号,姓名及其平均成绩
-- 28、查询男生、女生人数
-- 42、查询每门课程成绩最好的前两名
-- 35、查询所有学生的课程及分数情况
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)