通常大家都会根据查询的WHERE条件来创建合适的索引,不过这只是索引优化的一个方面。设计优秀的索引应该考虑到整个查询,而不单单是WHERE条件部分。索引确实是一种查找数据的高效方式,但是MySQL也可以使用索引来直接获取列的数据,这样就不再需要读取数据行。如果索引的叶子节点中已经包含要查询的数据,那么还有什么必要再回到表中查询呢? 如果一个索引覆盖所有需要查询的字段的值,我们就称之为“覆盖索引”。
覆盖索引是非常有用的工具,能够极大地提高性能:
在所有这些场景中,在索引中满足查询的成本一般比查询行要小得多。
不是所有类型的索引都可以成为覆盖索引。覆盖索引必须要存储索引列的值,而哈希索引、空间索引和全文索引都不存储索引列的值,所以MySQL只能使用B+Tree索引所覆盖索引。另外,不同的存储引擎实现覆盖索引的方式也不同,而且不是所有的引擎都支持覆盖索引。
当发起一个呗索引覆盖的查询是,在EXPLAIN的Extra列可以看到“Using index”的信息。
如: explain select col1 from layout_test where col2=99
索引覆盖查询还有很多陷阱可能会导致无法实现优化。MySQL查询优化器会在执行查询前判断是否有一个索引能进行覆盖。假设索引覆盖了wehre条件中的字段,但不是整个查询涉及的字段。mysql5.5和更早的版本也总是会回表获取数据行,尽管并不需要这一行且最终会被过滤掉。
如: EXPLAIN select * from people where last_name='Allen' and first_name like '%Kim%'
这里索引无法覆盖该查询,有两个原因:
这条语句只检索1行,而之前的 like '%Kim%'要检索3行。
也有办法解决上面所说的两个问题,需要重写查询并巧妙设计索引。
这种方式叫做延迟关联,因为延迟了对列的访问。在查询第一个阶段MySQL可以使用覆盖索引,因为索引包含了主键id的值,不需要做二次查找。
在FROM子句的子查询中找到匹配的id,然后根据这些id值在外层查询匹配获取需要的所有列值。虽然无法使用索引覆盖整个查询,但总算比完全无法利用索引覆盖的好吧。
数据量大了怎么办?
这样优化的效果取决于WHERE条件匹配返回的行数。假设这个people表有100万行,我们看一下上面两个查询在三个不同的数据集上的表现,每个数据集都包含100万行。
实例1中 ,查询返回了一个很大的结果集,因此看不到优化的效果。大部分时间都花在读取和发送数据上了。
实例2中 ,经过索引过滤,尤其是第二个条件过滤后只返回了很少的结果集,优化的效果非常明显:在这个数据及上性能提高了很多,优化后的查询效率主要得益于只需读取40行完整数据行,而不是原查询中需要的30000行。
实例3中 ,子查询效率反而下降。因为索引过滤时符合第一个条件的结果集已经很小了,所以子查询带来的成本反而比从表中直接提取完整行更高。
在大多数存储引擎中,覆盖索引只能覆盖那些只访问索引中部分列的查询。不过,可以更进一步优化InnoDB。回想一下,InnoDB的二级索引的叶子节点都包含了主键的值,这意味着InnoDB的二级索引可以有效地利用这些额外的主键列来覆盖查询。
例如,people表中last_name字段有一个二级索引,虽然该索引的列不包括主键id,但也能够用于对id做覆盖查询:
select id,last_name from people where last_name='hua'
1、要想高效利用索引,我们首先要考虑如何正确建立索引。
(1)在经常做搜索的列上,也就是WHERE子句里经常出现的列,考虑加上索引,加快搜索速度。
(2)唯一标识记录的列,应该加上唯一索引,强制该列的唯一性并且加快按该列查找记录的速度。
(3)在内连接使用的列上加上索引,最好是在内连接用到字段都加上,因为MySQL优化器会自动地选择连接顺序,然后观察索引的使用情况,将没用的索引删除即可。
(4)在需要排序的列上加上索引,因为索引本身是按顺序的组织的,它可以避免 filesort,要知道,Server层在进行排序时是在内存中进行的,非常消耗资源。
(5)可以考虑实现覆盖索引,即根据 SELECT 的所有字段上创建联合索引,这样存储引擎只用读取索引而不用去回表查询,极大地减少了对数据表的访问,大大地提高了性能。
(6)对于那些选择性很小的列,比如性别列,增加索引并不能明显加快查询速度,反而该索引会成为表的累赘。
(7)对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的要么数据量相当大,要么取值很少。
(8)当对写性能的要求远远大于读性能时,不应该创建索引。写性能和读性能是互相矛盾的。这是因为,维护一个 B+Tree 成本是非常大的,对索引的写会涉及到页的分裂等。
(9)复合索引的几个字段是否经常同时以AND方式出现在Where子句中?单字段查询是否极少甚至没有?如果是,则可以建立复合索引,否则考虑单字段索引。这还是说明,满足查询性能的前提下,索引越少越好。
(10)如果复合索引所包含的字段超过3个,那么仔细考虑其必要性,考虑减少复合的字段。
(11)在用于GROUP BY的列上加上索引,避免使用临时表。
(12)对于较长的字符列,如 char、varchar等,由于字符串的比较相对来说非常耗时,因此考虑使用前缀索引减少索引长度,或者创建自定义哈希索引,将字符串映射成整数,然后以该整数作为索引,同时以字符串的值作为过滤条件。
我们在创建索引时,可以根据下面原则进行简单判断:索引是否将相关记录集合到了一起,从未减少了磁盘I/O,加快搜索速度?索引中数据的排列顺序是否和查找的数据的排列顺序一致,从而避免了Server层的排序?索引中的列是否包含了查询中需要的全部列从而实现了覆盖索引? 这几个条件层层递进,满足得越多越好。
2、索引正确地建立了,我们还需要正确地使用它们:
(1)使用了运算符 !=,以及关键字not in,not exist,>,<等,总之产生的结果集很大时(也在where条件进行大范围的选择时),往往导致引擎不使用索引而是走全盘扫描。因为如果使用索引会造成大量的随机I/O,得不偿失。
(2)如果对索引列进行运算,如 WHERE substr(name, 1, 3)=‘mark’,存储引擎并不能聪明地判断哪些索引满足等式,因此不能使用到索引。
(3)使用到了LIKE,并且通配符在最前面时,不能使用索引。
(4)对于联合索引 (a, b, c),如果没用到最左列,那么一般情况下都使用不到索引。但是,比如统计 *** 作 count(*) where a >xxx,是可以使用到该联合索引的。毕竟统计这类 *** 作,它不是检索,并不需要索引完全有序。
(5)对于联合索引,如果某个列使用了范围查找,那么其右边的列都无法作为索引优化查询,但是由于 ICP(Index Condition Pushdown),这些列能作为过滤条件在存储引擎中对数据进行过滤。
(6)如果条件中有 OR,则必须每个OR用到的字段都有索引,否则不能使用任何索引。
(7)想在联合查询中使用索引来避免 filesort,则关联查询中的ORDER BY用到的字段必须全部是第一张表(驱动表)上的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)