如何测试mysql的性能和稳定性

如何测试mysql的性能和稳定性,第1张

 有一些有用的工具可以测试MySQL 和基于MySQL 的系统的性能。这里将演示如何利用这些工具进行测试。

mysqlslap

mysqlslap可以模拟服务器的负载,并输出计时信息。它包含在MySQL 5.1 的发行包中,应该在MySQL 4.1或者更新的版本中都可以使用。测试时可以执行并发连接数,并指定SQL 语句(可以在命令行上执行,也可以把SQL 语句写入到参数文件中)。如果没有指定SQL 语句,mysqlslap 会自动生成查询schema 的SELECT 语句。

MySQL Benchmark Suite (sql-bench)

在MySQL 的发行包中也提供了一款自己的基准测试套件,可以用于在不同数据库服务器上进行比较测试。它是单线程的,主要用于测试服务器执行查询的速度。结果会显示哪种类型的 *** 作在服务器上执行得更快。

这个测试套件的主要好处是包含了大量预定义的测试,容易使用,所以可以很轻松地用于比较不同存储引擎或者不同配置的性能测试。其也可以用于高层次测试,比较两个服务器的总体性能。当然也可以只执行预定义测试的子集(例如只测试UPDATE 的性能)。这些测试大部分是CPU 密集型的,但也有些短时间的测试需要大量的磁盘I/O *** 作。

这个套件的最大缺点主要有:它是单用户模式的,测试的数据集很小且用户无法使用指定的数据,并且同一个测试多次运行的结果可能会相差很大。因为是单线程且串行执行的,所以无法测试多CPU 的能力,只能用于比较单CPU 服务器的性能差别。使用这个套件测试数据库服务器还需要Perl 和BDB 的支持,相关文档请参考.

Super Smack

Super Smack是一款用于MySQL 和PostgreSQL的基准测试工具,可以提供压力测试和负载生成。这是一个复杂而强大的工具,可以模拟多用户访问,可以加载测试数据到数据库,并支持使用随机数据填充测试表。测试定义在"smack"文件中,smack 文件使用一种简单的语法定义测试的客户端、表、查询等测试要素。

Database Test Suite

Database Test Suite 是由开源软件开发实验室(OSDL,Open Source DevelopmentLabs)设计的,发布在SourceForge 网站上,这是一款类似某些工业标准测试的测试工具集,例如由事务处理性能委员会(TPC,Transaction Processing Performance Council)制定的各种标准。特别值得一提的是,其中的dbt2 就是一款免费的TPC-C OLTP 测试工具(未认证)。之前本书作者经常使用该工具,不过现在已经使用自己研发的专用于MySQL 的测试工具替代了。

Percona's TPCC-MySQL Tool

我们开发了一个类似TPC-C 的基准测试工具集,其中有部分是专门为MySQL 测试开发的。在评估大压力下MySQL 的一些行为时,我们经常会利用这个工具进行测试(简单的测试,一般会采用sysbench 替代),在源码库中有一个简单的文档说明。

sysbench

sysbench是一款多线程系统压测工具。它可以根据影响数据库服务器性能的各种因素来评估系统的性能。例如,可以用来测试文件I/O、 *** 作系统调度器、内存分配和传输速度、POSIX 线程,以及数据库服务器等。sysbench 支持Lua 脚本语言,Lua 对于各种测试场景的设置可以非常灵活。sysbench 是我们非常喜欢的一种全能测试工具,支持MySQL、 *** 作系统和硬件的硬件测试。(节选自《高性能MySQL》)

以下是一个文科生小白转行数据分析的人生历程,分享给你,相信可以帮助正处人生十字路口的朋友或正处于迷茫摇摆时期的人们一些启发或借鉴。1、在选择数据分析师这条路之前,一定要思考再三,虽然这条路看着光鲜靓丽(至少职业的薪酬收入类比其他行业不会好不少),但也是一条艰难前行之路,充满着未知、荆棘和困惑,尤其是对于文科出身的我,付出的努力更是一般理工男的好几倍吧应该……2、虽然数据分析这个行业有着天然的专业鄙视链(文理科的逻辑思维功底、编程语言接受程度上以及数理统计基础实实在在的存在差别,这也是甲方更信赖理工科出身的重要原因,因为社科或文艺类专业,很少有学校会严格地按照数理逻辑去制定学生的课程培养计划),但是并不代表文科生没有任何机会,因为大学以前,其实我们都没正式接触过编程或统计学,大学本科更多的是提升一个人的思维、而不是过硬的专研能力。所以文科专业的朋友,兴趣和决定也是重要因素,不能单单凭借客观的专业背景就否定自己。3、如果你要坚定的选择这条路,就必须克服各种依赖症,比如安装一个R语言或Python软件,从庞大的数据中得出客观的结论过程,用学到的知识去分析数据的价值等等,一定要动手动脑去实战,不要单凭以前的文科思维(更注重思维的创造和个性的发扬),理性思维和客观科学更重要。因为这种学习习惯决定着你必然会被同行的有心者远远地摔在后面,百度、谷歌、Stack Overflow永远向你免费敞开大门;4、动手实践和实习参与项目是很好的数据科学或者数据分析的开端,只学不练假把式,只有直接用于实战,才能看出来你学的东西到底有多少能够落地,能够用于提升业务的价值;5、在求职以前,倘若时间允许,把R语言、Python(数据科学相关模块)、SQL(可以选择一个平台,比如MySQL)这三大关卡早点过了。(如果你不想再天天加班补的话);6、如果你还是在校学生,学会分清各种事情的轻重缓急,比如各种无聊拉人凑场子讲座、听课发礼品的营销洗脑课,各种……的无效应酬社交,如果全部都用在数据分析的学习上,你会发现你的时间多了很多,自然你也可以更早地追上同行的脚步;7、脚踏实地的去走自己的路,不会的多写、多看、多问(问真正有价值的问题)、多总结、多交流,给自己足够的转行周期(如果你是科班出身的【统计、数学、计算机】,也许会走的顺风顺水,但也不可以掉以轻心,倘若不是,请一定要慎重选择,起码要给自己一到两年的转行缓冲期【具体视自己的专业背景和技术实力而定】,什么7天精通机器学习、三个月精通人工智能,你自己敢信嘛?)8、学会融会贯通不同领域的知识,触类旁通、横向迁移,这样学起来才有越学越有通透的感觉,否则你只能增加笔记本的厚度,徒增烦恼罢了。其实文科生学习数据分析或零基础转行的痛快和纠结大家都有,但任何的时间节点上,倘若一直停滞不前、犹豫不决,那么所有可以有或可能有的机会都会错失。庆幸我虽然浑浑噩噩,一路上也是披荆斩棘,但时光不负我,付出终究收获成果!愿所有文科生想进入数据分析行业或转行的小伙伴一切都顺利。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7348127.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-04
下一篇 2023-04-04

发表评论

登录后才能评论

评论列表(0条)

保存