【mysql】索引类型的划分

【mysql】索引类型的划分,第1张

了解mysql的索引类型的时候,我觉得按照以下4中方式划分逻辑是比较清晰的。

1.存储结构 2.物理存储 3.作用字段 4.功能

按照数据存储的结构可以分B树索引和hash索引。

又称为 BTREE 索引,目前大部分的索引都是采用 B-树索引来存储的。B-树索引是一个典型的数据结构。

基于这种树形数据结构,表中的每一行都会在索引上有一个对应值。因此,在表中进行数据查询时,可以根据索引值一步一步定位到数据所在的行。

查询必须从索引的最左边的列开始。

查询不能跳过某一索引列,必须按照从左到右的顺序进行匹配。

存储引擎不能使用索引中范围条件右边的列。

也称为散列索引或 HASH 索引。MySQL 目前仅有 MEMORY 存储引擎和 HEAP 存储引擎支持这类索引。

其中,MEMORY 存储引擎可以支持 B-树索引和 HASH 索引,且将 HASH 当成默认索引。

HASH 索引不是基于树形的数据结构查找数据,而是根据索引列对应的哈希值的方法获取表的记录行。

不能使用 HASH 索引排序。

HASH 索引只支持等值比较,如“=”“IN()”或“<=>”。

HASH 索引不支持键的部分匹配,因为在计算 HASH 值的时候是通过整个索引值来计算的。

聚集索引是按照所以把数据排好序了,所以一个表只能存在一个聚集索引,其它的都是非聚集索引。

因这个特性,聚集索引是查询数据范围的时候有很大的性能优势。

但是也需要注意的是如果频繁更新的列不适合设置为聚集索引,

原因很简单,每次更新都需要从新排序,频繁的更新给的压力也大。

如果不指定的话,默认主键为聚集索引。

一个表里除了一个聚集索引外其他的都是非聚集索引,虽然不能把数据按照索引排序,但是索引数据是可以排序的。

所以非聚集索引查询范围的时候是先找索引列的范围,再通过这个索引查询行的值。

单列索引即一个索引只包含单个列。

组合索引指在表的多个字段组合上创建的索引,只有在查询条件中使用了这些字段的左边字段时,索引才会被使用。使用组合索引时遵循最左前缀集合

Primary Key(聚集索引):InnoDB存储引擎的表会存在主键(唯一非null),如果建表的时候没有指定主键,则会使用第一非空的唯一索引作为聚集索引,否则InnoDB会自动帮你创建一个不可见的、长度为6字节的row_id用来作为聚集索引。

Key(普通索引):是MySQL中的基本索引类型,允许在定义索引的列中插入重复值和空值

Unique(唯一索引):索引列的值必须唯一,但允许有空值。若是组合索引,则列值的组合必须唯一。

主键索引是一种特殊的唯一索引,不允许有空值。

既不是主键索引也不是唯一索引的一般索引。

FULLTEXT(全文索引):全文索引类型为FULLTEXT,在定义索引的列上支持值的全文查找,允许在这些索引列中插入重复值和空值。

全文索引可以在CHAR、VARCHAR或者TEXT类型的列上创建。

空间索引主要用于地理空间数据类型 GEOMETRY。

下面是 mysql官网给出的几个存储引擎和索引之间的关系 。

欢迎大家的意见和交流

email: li_mingxie@163.com

二叉搜索树、N叉树

页分裂:B+树的插入可能会引起数据页的分裂,删除可能会引起数据页的合并,二者都是比较重的IO消耗,所以比较好的方式是顺序插入数据,这也是我们一般使用自增主键的原因之一。

页分裂逆过程:页合并,当删除数据后,相邻的两个数据页利用率很低的时候会做数据页合并

主键索引:key:主键,value:数据页,存储每行数据

非主键索引:key:非主键索引,value:主键key,导致回表

最左匹配:优先将区分度高的列放到前面,这样可以高效索引,

最左匹配原则遇到范围查询就停止匹配,范围查询(>、<、between、like)为什么?因为出现范围匹配后,后面的索引字段无法保证有序,局部有序失去,顺序失去则无法提高查询效率

SELECT * FROM table WHERE a IN (1,2,3) and b >1

如何建立索引?

还是对(a,b)建立索引,因为IN在这里可以视为等值引用,不会中止索引匹配,所以还是(a,b)!

索引组织表

索引用页存储:key【10】-point【6】,通过调整key大小,当页大小固定的情况下,通过调整key大小,使得N叉树变化;

如key 10, point 6则单个索引16字节,页大小为16k,则页面总共可以存储1024个索引,即N大小

覆盖索引: 二级索引的信息已经存在想要的列,例如主键

如果现在有一个高频请求,要根据市民的身份z号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。

索引下推优化:可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

整理索引碎片,重建表:alter table T engine=InnoDB

  首先是看key的大小,另外是数据页的大小,如果需要改变N,则需要从这两个方面做改动;

一个innoDB引擎的表,数据量非常大,根据二级索引搜索会比主键搜索快,文章阐述的原因是主键索引和数据行在一起,非常大搜索慢,我的疑惑是:通过普通索引找到主键ID后,同样要跑一边主键索引,对于使用覆盖索引的情况下,使用覆盖索引可以直接解决问题

https://blog.csdn.net/itworld123/article/details/115144202

https://time.geekbang.org/column/article/69236

https://zhuanlan.zhihu.com/p/334684710

https://www.cxyzjd.com/article/pyzhizhuren/88431380

https://www.jianshu.com/p/4277d9dd0a9f

https://www.cnblogs.com/rjzheng/p/12557314.html

https://mengkang.net/1302.html

https://note.cser.club/database/bi-xu-le-jie-de-mysql-san-da-ri-zhi-binlogredo-log-he-undo-log

https://cloud.tencent.com/developer/news/44861


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7363901.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-04
下一篇 2023-04-04

发表评论

登录后才能评论

评论列表(0条)

保存