b表扫描了八十万行很正常,因为语句除了对等连接限制外并没有其它筛选条件,符合连接条件的记录都得检索出来,b表对等的a_id越多扫描的行数越多,b表如果所有的a_id都与a表对等那么即使利用了索引也会扫描所有的行。其实题主的语句已经优化了,如果没有利用到索引I/O次数会更多。如果题主需要进一步减少扫描行数可以考虑在连接限制的基础上再增加筛选条件,例如...and b.a_id<1000等,这样就可以利用索引进一步减少对表记录行的扫描数。
二叉搜索树、N叉树
页分裂:B+树的插入可能会引起数据页的分裂,删除可能会引起数据页的合并,二者都是比较重的IO消耗,所以比较好的方式是顺序插入数据,这也是我们一般使用自增主键的原因之一。
页分裂逆过程:页合并,当删除数据后,相邻的两个数据页利用率很低的时候会做数据页合并
主键索引:key:主键,value:数据页,存储每行数据
非主键索引:key:非主键索引,value:主键key,导致回表
最左匹配:优先将区分度高的列放到前面,这样可以高效索引,
最左匹配原则遇到范围查询就停止匹配,范围查询(>、<、between、like)为什么?因为出现范围匹配后,后面的索引字段无法保证有序,局部有序失去,顺序失去则无法提高查询效率
SELECT * FROM table WHERE a IN (1,2,3) and b >1
如何建立索引?
还是对(a,b)建立索引,因为IN在这里可以视为等值引用,不会中止索引匹配,所以还是(a,b)!
索引组织表
索引用页存储:key【10】-point【6】,通过调整key大小,当页大小固定的情况下,通过调整key大小,使得N叉树变化;
如key 10, point 6则单个索引16字节,页大小为16k,则页面总共可以存储1024个索引,即N大小
覆盖索引: 二级索引的信息已经存在想要的列,例如主键
如果现在有一个高频请求,要根据市民的身份z号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。
索引下推优化:可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
整理索引碎片,重建表:alter table T engine=InnoDB
首先是看key的大小,另外是数据页的大小,如果需要改变N,则需要从这两个方面做改动;
一个innoDB引擎的表,数据量非常大,根据二级索引搜索会比主键搜索快,文章阐述的原因是主键索引和数据行在一起,非常大搜索慢,我的疑惑是:通过普通索引找到主键ID后,同样要跑一边主键索引,对于使用覆盖索引的情况下,使用覆盖索引可以直接解决问题
https://blog.csdn.net/itworld123/article/details/115144202
https://time.geekbang.org/column/article/69236
https://zhuanlan.zhihu.com/p/334684710
https://www.cxyzjd.com/article/pyzhizhuren/88431380
https://www.jianshu.com/p/4277d9dd0a9f
https://www.cnblogs.com/rjzheng/p/12557314.html
https://mengkang.net/1302.html
https://note.cser.club/database/bi-xu-le-jie-de-mysql-san-da-ri-zhi-binlogredo-log-he-undo-log
https://cloud.tencent.com/developer/news/44861
了解mysql的索引类型的时候,我觉得按照以下4中方式划分逻辑是比较清晰的。1.存储结构 2.物理存储 3.作用字段 4.功能
按照数据存储的结构可以分B树索引和hash索引。
又称为 BTREE 索引,目前大部分的索引都是采用 B-树索引来存储的。B-树索引是一个典型的数据结构。
基于这种树形数据结构,表中的每一行都会在索引上有一个对应值。因此,在表中进行数据查询时,可以根据索引值一步一步定位到数据所在的行。
查询必须从索引的最左边的列开始。
查询不能跳过某一索引列,必须按照从左到右的顺序进行匹配。
存储引擎不能使用索引中范围条件右边的列。
也称为散列索引或 HASH 索引。MySQL 目前仅有 MEMORY 存储引擎和 HEAP 存储引擎支持这类索引。
其中,MEMORY 存储引擎可以支持 B-树索引和 HASH 索引,且将 HASH 当成默认索引。
HASH 索引不是基于树形的数据结构查找数据,而是根据索引列对应的哈希值的方法获取表的记录行。
不能使用 HASH 索引排序。
HASH 索引只支持等值比较,如“=”“IN()”或“<=>”。
HASH 索引不支持键的部分匹配,因为在计算 HASH 值的时候是通过整个索引值来计算的。
聚集索引是按照所以把数据排好序了,所以一个表只能存在一个聚集索引,其它的都是非聚集索引。
因这个特性,聚集索引是查询数据范围的时候有很大的性能优势。
但是也需要注意的是如果频繁更新的列不适合设置为聚集索引,
原因很简单,每次更新都需要从新排序,频繁的更新给的压力也大。
如果不指定的话,默认主键为聚集索引。
一个表里除了一个聚集索引外其他的都是非聚集索引,虽然不能把数据按照索引排序,但是索引数据是可以排序的。
所以非聚集索引查询范围的时候是先找索引列的范围,再通过这个索引查询行的值。
单列索引即一个索引只包含单个列。
组合索引指在表的多个字段组合上创建的索引,只有在查询条件中使用了这些字段的左边字段时,索引才会被使用。使用组合索引时遵循最左前缀集合
Primary Key(聚集索引):InnoDB存储引擎的表会存在主键(唯一非null),如果建表的时候没有指定主键,则会使用第一非空的唯一索引作为聚集索引,否则InnoDB会自动帮你创建一个不可见的、长度为6字节的row_id用来作为聚集索引。
Key(普通索引):是MySQL中的基本索引类型,允许在定义索引的列中插入重复值和空值
Unique(唯一索引):索引列的值必须唯一,但允许有空值。若是组合索引,则列值的组合必须唯一。
主键索引是一种特殊的唯一索引,不允许有空值。
既不是主键索引也不是唯一索引的一般索引。
FULLTEXT(全文索引):全文索引类型为FULLTEXT,在定义索引的列上支持值的全文查找,允许在这些索引列中插入重复值和空值。
全文索引可以在CHAR、VARCHAR或者TEXT类型的列上创建。
空间索引主要用于地理空间数据类型 GEOMETRY。
下面是 mysql官网给出的几个存储引擎和索引之间的关系 。
欢迎大家的意见和交流
email: li_mingxie@163.com
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)