1、异步复制:主服务器将执行的事务发送到从服务器,不等待从服务器的响应,主服务器只是将事务发送出去;
2、半同步复制:主服务器会等待从服务器的响应,当主服务器收到从服务器的响应后,才继续执行下一个事务;
3、同步复制:主服务器会等待从服务器的响应,主服务器将事务发送到从服务器后,必须等待从服务器的响应,从服务器确认收到事务后,主服务器才能继续执行下一个事务。
拓展:MySQL主从复制模式可以实现数据备份、提高服务器性能、实现数据安全等功能,是MySQL数据库系统中常用的一种复制方式。
为了保障数据的安全与稳定性,我们常用数据库的主从复制与主主复制来实现。主从复制为从机实时拷贝一份主机的数据,当主机有数据变化时,从机的数据会跟着变,当从机数据有变化时,主机数据不变;同样地,主主复制就是,多个主机之间,只要有一个主机的数据变化了,其它主机数据也会跟着变化。
添加以下内容
如果你是使用我之前那种方式启动的MySQL,那么你只需要去你相关联的宿主机的配置文件夹里面去建立一个 my.cnf 然后写入上面的类容就好了。
比如:我的启动命令如下(不应该换行的,这里为了方便查看,我给它分行了)
那么我只需要在 /docker/mysql_master/conf 这个目录下创建 my.cnf 文件就好了。
这个命令是需要在容器里面执行的
docker重启mysql会关闭容器,我们需要重启容器。
确保在主服务器上 skip_networking 选项处于 OFF 关闭状态, 这是默认值。 如果是启用的,则从站无法与主站通信,并且复制失败。
我的命令如下
在从服务器配置连接到主服务器的相关信息 (在容器里面的mysql执行)
上面代码的xxxxx你需要换成你的IP,docker 查看容器 IP 的命令如下:
启动的那个从服务器的线程
测试的话,你可以在主服务器里面,创建一个数据库,发现从服务器里面也有了,就成功了。
如果你还想要一个从服务器,那么你只需要按照上面配置从服务器再配置一个就行了,新建的从服务器,会自动保存主服务器之前的数据。(测试结果) 如果你上面的主从复制搞定了,那么这个主主复制就很简单了。我们把上面的从服务器也改成主服务器
1)、修改上面的从服务器的my.cnf文件,和主服务器的一样(注意这个server-id不能一样)然后重启服务器 2)、在从服务器里面创建一个复制用户创建命令一样(这里修改一下用户名可以改为 repl2) 3)、在之前的主服务器里面运行下面这个代码
上面主要是教你怎么搭建一个MySQL集群,但是这里面还有很多其它的问题。也是我在学习过程中思考的问题,可能有的小伙伴上来看到文章长篇大论的看不下去,只想去实现这样一直集群功能,所以我就把问题写在下面了。
1)、MySQL的replication和pxc MySQL的集群方案有replication和pxc两种,上面是基于replication实现的。
replication: 异步复制,速度快,无法保证数据的一致性。 pxc: 同步复制,速度慢,多个集群之间是事务提交的数据一致性强。
2)、MySQL的replication数据同步的原理 我们在配置的时候开启了它的二进制日志,每次 *** 作数据库的时候都会更新到这个日志里面去。主从通过同步这个日志来保证数据的一致性。
3)、可否不同步全部的数据 可以配置,同步哪些数据库,甚至是哪些表。
4)、怎么关闭和开始同步
5)、我就我的理解画出了,主从、主从从、主主、复制的图。
往期推荐:
利用Docker仅花1分钟时间安装好MySQL服务
Linux下MySQL 5.7的离线与在线安装(图文)
Linux下安装MySQL8.0(收藏!)
单个复制组中的允许组成员(MySQL Server)的最大数量是9个。如果有更多的Server尝试加入该组时,其连接请求将被拒绝。该限制数量是通过已有的测试案例和基准测试中得出的一个安全边界,在这个安全边界中,组能够安全、可靠、稳定地运行在一个稳定的局域网中。
组中的成员之间,通过建立点对点的TCP连接与组中的其他成员进行通讯。这些连接仅用于组成员之间的内部通信和消息传递。用于建立TCP连接的地址信息由系统变量group_replication_local_address进行配置。
指示启用该系统变量的Server在执行START GROUP_REPLICATION语句时引导创建一个组,并充当种子成员。后续的其他Server如果要加入组(加入组的Server在这里称为joiner成员),则需要向创建组的成员请求加入组(接受连接请求的组成员在这里称为donor节点),创建组的成员在接收到joiner节点请求之后,会动态更改一些配置,以便将其添加到组中
有如下两种场景需要使用该系统变量来引导创建一个组:
如果组使用多主模式,则可以将无冲突的事务分散到不同的主要节点中,这样就能够一定程度上扩展写负载能力(通过多节点写来扩展一小部分IO *** 作,能够间接扩展一小部分写负载)。
由于组成员之间需要不断地相互交互消息以实现同步数据和相互告知组成员状态的目的。因此,相对于主从复制来说,预计会产生一些额外的负载,但具体多多少负载很难量化,因为它还取决于组的大小(即,组成员数量。例如:9个组成员对带宽需求大于3个成员,且内存和CPU消息也更大,因为成员数量越多,组中消息传递和处理工作就越复杂)。
可以,但是每个成员之间的网络连接必须可靠并具有良好的性能,低延迟、高带宽的网络连接是保证组复制高性能的必要条件,如果网络带宽存在瓶颈,可以参考"6.3 消息压缩" 中介绍的方法来降低组复制的带宽消耗。但是,如果网络连接存在丢包的问题,可能导致重新传输造成更高的端到端延迟,这个时候,吞吐量和延迟都将受到负面影响。注意:当任何组成员之间的网络往返时间(RTT)超过5秒时,可能会触发内置的故障检测机制而导致组成员被驱逐出组(实际是否被驱逐出组,需要看具体的配置)。
这取决于连接发生问题的原因。如果连接问题是暂时的,并且重新连接的速度足够快(即,发生问题的时间很短),以至于故障检测器没有发现或者未达到故障级别,那么组成员可能就不会被驱逐出组。如果发生问题的时间足够长,则故障检测器最终会发现问题并将故障成员驱逐出组。
从MySQL 8.0版本开始,可以使用两个系统变量进行调节,这就为发生问题的组成员增加了一个继续留在组中或被驱逐出组之后重新加入组的机会:
group_replication_autorejoin_tries:设置一个组成员被驱逐出组或者与组中多数成员失联达到超时时间之后,尝试自动重新加入组的次数。设置该系统变量为非0值时,成员会按照该系统变量设置的次数每隔5分钟进行一次自动重新加入组的尝试
如果一个成员被驱逐出组,并且耗尽了自动重新加入组的尝试次数都不能成功加入组,那么将会按照系统变量group_replication_exit_state_action指定的值执行退出 *** 作。之后,如果需要将其重新加入组,你需要手动执行加入组的步骤(或者使用自动化运维脚本)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)