1、数据库信息量大了一般都要使用主从数据库,主写从读。使用主从数据库主要是使数据库能支撑更大的并发,例如:“前台”使用master(主库),“报表”使用slave(从库),那么任何“报表”的sql在slave执行都不会造成“前台”锁表;另外还有方便热备份,支持两个库用不同引擎等好处
2、而程序里使用缓存多是为了减少对数据库访问压力。
MYSQL主从同步原理:1) MYSQL主从同步是异步复制的过程,整个同步需要开启3线程,master上开启bin-log日志(记录数据库增、删除、修改、更新 *** 作);
2) Slave开启I/O线程来请求master服务器,请求指定bin-log中position点之后的内容;
3) Master端收到请求,Master端I/O线程响应请求,bin-log、position之后内容返给salve;
4) Slave将收到的内容存入relay-log中继日志中,生成master.info(记录master ip、bin-log、position、用户名密码);
5) Slave端SQL实时监测relay-log日志有更新,解析更新的sql内容,解析成sql语句,再salve库中执行;
6) 执行完毕之后,Slave端跟master端数据保持一致!
**MYSQL bin-log用途**
1) bin-log日志最大的功能记录数据库增、删、改、插入等 *** 作,记录用户 *** 作的SQL语句;
2) bin-log日志可以用数据增量备份、完整备份;
3) bin-log还可以主要主从复制+读写分离;
MySQL 主从一直是面试常客,里面的知识点虽然基础,但是能回答全的同学不多。
比如楼哥之前面试小米,就被问到过主从复制的原理,以及主从延迟的解决方案,因为回答的非常不错,给面试官留下非常好的印象。你之前面试,有遇到过哪些 MySQL 主从的问题呢?
所谓 MySQL 主从,就是建立两个完全一样的数据库,一个是主库,一个是从库, 主库对外提供读写的 *** 作,从库对外提供读的 *** 作 ,下面是一主一从模式:
对于数据库单机部署,在 4 核 8G 的机器上运行 MySQL 5.7 时,大概可以支撑 500 的 TPS 和 10000 的 QPS, 当遇到一些活动时,查询流量骤然,就需要进行主从分离。
大部分系统的访问模型是读多写少,读写请求量的差距可能达到几个数量级,所以我们可以通过一主多从的方式, 主库只负责写入和部分核心逻辑的查询,多个从库只负责查询,提升查询性能,降低主库压力。
MySQL 主从还能做到服务高可用,当主库宕机时,从库可以切成主库,保证服务的高可用,然后主库也可以做数据的容灾备份。
整体场景总结如下:
MySQL 的主从复制是依赖于 binlog 的,也就是记录 MySQL 上的所有变化并以二进制形式保存在磁盘上二进制日志文件。
主从复制就是将 binlog 中的数据从主库传输到从库上,一般这个过程是异步的,即主库上的 *** 作不会等待 binlog 同步的完成。
详细流程如下:
当主库和从库数据同步时,突然中断怎么办?因为主库与从库之间维持了一个长链接,主库内部有一个线程,专门服务于从库的这个长链接的。
对于下面的情况,假如主库执行如下 SQL,其中 a 和 create_time 都是索引:
我们知道,数据选择了 a 索引和选择 create_time 索引,最后 limit 1 出来的数据一般是不一样的。
所以就会存在这种情况:在 binlog = statement 格式时,主库在执行这条 SQL 时,使用的是索引 a,而从库在执行这条 SQL 时,使用了索引 create_time,最后主从数据不一致了。
那么我们改如何解决呢?
可以把 binlog 格式修改为 row,row 格式的 binlog 日志记录的不是 SQL 原文,而是两个 event:Table_map 和 Delete_rows。
Table_map event 说明要 *** 作的表,Delete_rows event用于定义要删除的行为,记录删除的具体行数。 row 格式的 binlog 记录的就是要删除的主键 ID 信息,因此不会出现主从不一致的问题。
但是如果 SQL 删除 10 万行数据,使用 row 格式就会很占空间的,10 万条数据都在 binlog 里面,写 binlog 的时候也很耗 IO。但是 statement 格式的 binlog 可能会导致数据不一致。
设计 MySQL 的大叔想了一个折中的方案,mixed 格式的 binlog,其实就是 row 和 statement 格式混合使用, 当 MySQL 判断可能数据不一致时,就用 row 格式,否则使用就用 statement 格式。
有时候我们遇到从数据库中获取不到信息的诡异问题时,会纠结于代码中是否有一些逻辑会把之前写入的内容删除,但是你又会发现,过了一段时间再去查询时又可以读到数据了,这基本上就是主从延迟在作怪。
主从延迟,其实就是“从库回放” 完成的时间,与 “主库写 binlog” 完成时间的差值, 会导致从库查询的数据,和主库的不一致 。
谈到 MySQL 数据库主从同步延迟原理,得从 MySQL 的主从复制原理说起:
总结一下主从延迟的主要原因 :主从延迟主要是出现在 “relay log 回放” 这一步,当主库的 TPS 并发较高,产生的 DDL 数量超过从库一个 SQL 线程所能承受的范围,那么延时就产生了,当然还有就是可能与从库的大型 query 语句产生了锁等待。
我们一般会把从库落后的时间作为一个重点的数据库指标做监控和报警,正常的时间是在毫秒级别,一旦落后的时间达到了秒级别就需要告警了。
解决该问题的方法,除了缩短主从延迟的时间,还有一些其它的方法,基本原理都是尽量不查询从库。
具体解决方案如下:
在实际应用场景中,对于一些非常核心的场景,比如库存,支付订单等,需要直接查询从库,其它非核心场景,就不要去查主库了。
两台机器 A 和 B,A 为主库,负责读写,B 为从库,负责读数据。
如果 A 库发生故障,B 库成为主库负责读写,修复故障后,A 成为从库,主库 B 同步数据到从库 A。
一台主库多台从库,A 为主库,负责读写,B、C、D为从库,负责读数据。
如果 A 库发生故障,B 库成为主库负责读写,C、D负责读,修复故障后,A 也成为从库,主库 B 同步数据到从库 A。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)