当前社会工作数据库主要用什么

当前社会工作数据库主要用什么,第1张

常用:中小型的用access,MSSQL,MySQL,大型的用SysBase,DB2,Oracle

麦杰的实时数据实时数据库系统介绍

实时数据库系统是数据库理论在新领域的扩展,在电力、化工、钢铁、冶金、造纸、交通控制和证券金融等领域有着非常广阔的应用前景。它可以为企业提供高速、及时的实时数据服务,能够对快速变化的实时数据进行长期高效的历史存储,是工厂控制层(现场总线、DCS、PLC等)与生产管理系统之间连接的桥梁,同时也是流程模拟、先进控制、在线优化、故障诊断等系统的数据平台。

openPlant实时数据库系统采用当今先进的技术和架构,可安全、稳定地实现与现场各控制系统的接口,并能对采集来的数据进行高效的数据压缩和长期的历史存储,同时提供方便易用的客户端应用和通用的数据接口(API/DDE/ODBC/JDBC/OPC等),使企业的管理和决策人员能及时、全面的了解当前的生产情况,也可回顾过去的生产情况,及时发现生产中所存在的问题,提高设备利用率,降低生产成本,增强企业的核心竞争力。

实时数据库系统特点

■ 企业级的生产实时数据平台

■ 分布式数据库架构,满足集团级需求

■ 实时访问全厂生产数据

■ 高效的数据压缩和长期历史存储

■ 支持在线计算和统计

■ 专业的图形仿真技术,监视画面与控制系统完全一致

■ 丰富的客户端应用工具

■ 优异的跨平台性能,支持Unix/Linux/Windows等 *** 作系统

■ 开放的数据接口,如API/DDE/ODBC/JDBC/OPC

■ 200,000点上万小时现场稳定运行考验

■ 支持远程访问,随时随地享用生产信息

■ 个性化定制服务,让您从容应对不断变化的用户需求

IBM 的DB2

作为关系数据库领域的开拓者和领航人,IBM在1977年完成了System R系统的原型,1980年开始提供集成的数据库服务器—— System/38,随后是SQL/DSforVSE和VM,其初始版本与SystemR研究原型密切相关。DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 6.1则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括Linux在内的一系列平台。

Oracle

Oracle前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发关系数据库的厂商之一,其产品支持最广泛的 *** 作系统平台。目前Oracle关系数据库产品的市场占有率名列前茅。现在Oracle数据库包含三种:大型数据库(主流是10g/11g)、My Sql数据库、内存数据库。

Informix

Informix在1980年成立,目的是为Unix等开放 *** 作系统提供专业的关系型数据库产品。公司的名称Informix便是取自Information 和Unix的结合。Informix第一个真正支持SQL语言的关系数据库产品是Informix SE(StandardEngine)。InformixSE是在当时的微机Unix环境下主要的数据库产品。它也是第一个被移植到Linux上的商业数据库产品。

Sybase

Sybase公司成立于1984年,公司名称“Sybase”取自“system”和“database” 相结合的含义。Sybase公司的创始人之一Bob Epstein 是Ingres 大学版(与System/R同时期的关系数据库模型产品)的主要设计人员。公司的第一个关系数据库产品是1987年5月推出的Sybase SQLServer1.0。Sybase首先提出Client/Server数据库体系结构的思想,并率先在Sybase SQLServer 中实现。

SQL Server

1987 年,微软和IBM合作开发完成OS/2,IBM 在其销售的OS/2 ExtendedEdition 系统中绑定了OS/2Database Manager,而微软产品线中尚缺少数据库产品。为此,微软将目光投向Sybase,同Sybase 签订了合作协议,使用Sybase的技术开发基于OS/2平台的关系型数据库。1989年,微软发布了SQL Server 1.0 版。

PostgreSQL

PostgreSQL 是一种特性非常齐全的自由软件的对象——关系性数据库管理系统(ORDBMS),它的很多特性是当今许多商业数据库的前身。PostgreSQL最早开始于BSD的Ingres项目。PostgreSQL 的特性覆盖了SQL-2/SQL-92和SQL-3。首先,它包括了可以说是目前世界上最丰富的数据类型的支持;其次,目前PostgreSQL 是唯一支持事务、子查询、多版本并行控制系统、数据完整性检查等特性的唯一的一种自由软件的数据库管理系统.

mySQL

MySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQL AB公司。在2008年1月16号被Sun公司收购。而2009年,SUN又被Oracle收购。对于Mysql的前途,没有任何人抱乐观的态度。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。

Access数据库

美国Microsoft公司于1994年推出的微机数据库管理系统。它具有界面友好、易学易用、开发简单、接口灵活等特点,是典型的新一代桌面数据库管理系统。其主要特点如下:

(1)完善地管理各种数据库对象,具有强大的数据组织、用户管理、安全检查等功能。

(2)强大的数据处理功能,在一个工作组级别的网络环境中,使用Access开发的多用户数据库管理系统具有传统的XBASE(DBASE、FoxBASE的统称)数据库系统所无法实现的客户服务器(Cient/Server)结构和相应的数据库安全机制,Access具备了许多先进的大型数据库管理系统所具备的特征,如事务处理/出错回滚能力等。

(3)可以方便地生成各种数据对象,利用存储的数据建立窗体和报表,可视性好。

(4)作为Office套件的一部分,可以与Office集成,实现无缝连接。

(5)能够利用Web检索和发布数据,实现与Internet的连接。 Access主要适用于中小型应用系统,或作为客户机/服务器系统中的客户端数据库。

SQLite

SQLite是遵守ACID的关联式资料库管理系统,它包含在一个相对小的C库中。它是D.RichardHipp建立的公有领域项目。不像常见的客户端/服务器结构范例,SQLite引擎不是个程序与之通信的独立进程,而是连接到程序中成为它的一个主要部分。所以主要的通信协议是在编程语言内的直接API调用。这在消耗总量、延迟时间和整体简单性上有积极的作用。整个数据库(定义、表、索引和数据本身)都在宿主主机上存储在一个单一的文件中。它的简单的设计是通过在开始一个事务的时候锁定整个数据文件而完成的。

FoxPro数据库

最初由美国Fox公司1988年推出,1992年Fox公司被Microsoft公司收购后,相继推出了FoxPro2.5、2.6和VisualFoxPro等版本,其功能和性能有了较大的提高。 FoxPro2.5、2.6分为DOS和Windows两种版本,分别运行于DOS和Windows环境下。FoxPro比FoxBASE在功能和性能上又有了很大的改进,主要是引入了窗口、按纽、列表框和文本框等控件,进一步提高了系统的开发能力。

INFOBANK数据库

INFOBANK数据库,中国资讯行1995年推出,经历17年的发展,已成为全球最大的中文商业信息数据库之一。

INFOBANK采集来自国内1200多家媒体、国外100家媒体的公开信息,同时与国内百余家官方和行业权威机构合作,为广大用户提供丰富的中文商业信息。

INFOBANK由14个子数据库组成,100亿的汉字储量,累计包含专业文献超过600万篇,资讯内容涉及19个大类,197个行业,日增新250万汉字。同时还设有特点栏目,满足用户撰写论文、了解行业信息等多样化需求。

常用的,SQL注入,XSS,命令执行,上传,弱口令,扫描备份文件,社工,包括找0DAY之类的,拿旁站然后提权,实在不行就C段嗅探,这里面每一项都分为不同的方向,比如弱口令,可以是FTP,SSH,SQLSERVER,MYSQL,VNC,PCANYWHERE,3389等的弱口令,社工也分为不同的方向,其实这里社工的概念最广,这个要看自己的领悟了

0×00 开头照例扯淡

自从各种脱裤门事件开始层出不穷,在下就学乖了,各个地方的密码全都改成不一样的,重要帐号的密码定期更换,生怕被人社出祖宗十八代的我,甚至开始用起了假名字,我给自己起一新网名地兴才地,这个看起来还不错的名字,其实是我们家乡骂人土话,意思是脑残人士…. -_-|||额好吧,反正是假的,不要在意这些细节。

这只是名,至于姓氏么,每个帐号的注册资料那里,照着百家姓上赵钱孙李周吴郑王的依次往下排,什么张兴才、李兴才、王兴才……于是也不知道我这样地兴才地了多久,终于有一天,我接到一个陌生电话:您好,请问是马兴才先生吗?

好么,该来的终于还是来了,于是按名索骥,得知某某网站我用了这个名字,然后通过各种途径找,果然,那破站被脱裤子了。

果断Down了那个裤子,然后就一发不可收拾,走上了收藏裤子的不归路,直到有一天,我发现收藏已经非常丰富了,粗略估计得好几十亿条数据,拍脑袋一想,这不能光收藏啊,我也搭个社工库用吧……

0×01 介绍

社工库怎么搭呢,这种海量数据的东西,并不是简单的用mysql建个库,然后做个php查询select * from sgk where username like ‘%xxxxx%’这样就能完事的,也不是某些幼稚骚年想的随便找个4g内存,amd双核的破电脑就可以带起来的,上面这样的语句和系统配置,真要用于社工库查询,查一条记录恐怕得半小时。好在这个问题早就被一种叫做全文搜索引擎的东西解决了,更好的消息是,全文搜索引擎大部分都是开源的,不需要花钱。

目前网上已经搭建好的社工库,大部分是mysql+coreseek+php架构,coreseek基于sphinx,是一款优秀的全文搜索引擎,但缺点是比较轻量级,一旦数据量过数亿,就会有些力不从心,并且搭建集群做分布式性能并不理想,如果要考虑以后数据量越来越大的情况,还是得用其他方案,为此我使用了solr。

Solr的基础是著名的Lucene框架,基于java,通过jdbc接口可以导入各种数据库和各种格式的数据,非常适合开发企业级的海量数据搜索平台,并且提供完善的solr cloud集群功能,更重要的是,solr的数据查询完全基于http,可以通过简单的post参数,返回json,xml,php,python,ruby,csv等多种格式。

以前的solr,本质上是一组servlet,必须放进Tomcat才能运行,从solr5开始,它已经自带了jetty,配置的好,完全可以独立使用,并且应付大量并发请求,具体的架构我们后面会讲到,现在先来进行solr的安装配置。

0×02 安装和配置

以下是我整个搭建和测试过程所用的硬件和软件平台,本文所有内容均在此平台上完成:

软件配置: solr5.5,mysql5.7,jdk8,Tomcat8 Windows10/Ubuntu14.04 LTS

硬件配置: i7 4770k,16G DDR3,2T西数黑盘

2.1 mysql数据库

Mysql数据库的安装和配置我这里不再赘述,只提一点,对于社工库这种查询任务远远多于插入和更新的应用来说,最好还是使用MyISAM引擎。

搭建好数据库后,新建一个库,名为newsgk,然后创建一个表命名为b41sgk,结构如下:

id bigint 主键 自动增长

username varchar 用户名

email varchar 邮箱

password varchar 密码

salt varchar 密码中的盐或者第二密码

ip varchar ip、住址、电话等其他资料

site varchar 数据库的来源站点

接下来就是把收集的各种裤子全部导入这个表了,这里推荐使用navicat,它可以支持各种格式的导入,具体过程相当的枯燥乏味,需要很多的耐心,这里就不再废话了,列位看官自己去搞就是了,目前我初步导入的数据量大约是10亿条。

2.2 Solr的搭建和配置

首先下载solr:

$ wget

解压缩:

$ tar zxvf solr-5.5.0.tgz

安装jdk8:

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java8-installer

$ sudo apt-get install oracle-java8-set-default

因为是java跨平台的,Windows下和linux下solr是同一个压缩包,windows下jdk的安装这里不再说明。

进入解压缩后的solr文件夹的bin目录,solr.cmd和solr分别是windows和linux下的启动脚本:

因为社工库是海量大数据,而jvm默认只使用512m的内存,这远远不够,所以我们需要修改,打开solr.in.sh文件,找到这一行:

SOLR_HEAP=地512m地

依据你的数据量,把它修改成更高,我这里改成4G,改完保存. 在windows下略有不同,需要修改solr.in.cmd文件中的这一行:

set SOLR_JAVA_MEM=-Xms512m -Xmx512m

同样把两个512m都修改成4G。

Solr的启动,重启和停止命令分别是:

$ ./solr start

$ ./solr restart –p 8983

$ ./solr stop –all

在linux下还可以通过install_solr_service.sh脚本把solr安装为服务,开机后台自动运行。

Solr安装完成,现在我们需要从mysql导入数据,导入前,我们需要先创建一个core,core是solr的特有概念,每个core是一个查询、数据,、索引等的集合体,你可以把它想象成一个独立数据库,我们创建一个新core:

在solr-5.5.0/server/solr子目录下面建立一个新文件夹,命名为solr_mysql,这个是core的名称,在下面创建两个子目录conf和data,把solr-5.5.0/solr-5.5.0/example/example-DIH/solr/db/conf下面的所有文件全部拷贝到我们创建的conf目录中.接下来的配置主要涉及到三个文件, solrconfig.xml, schema.xml和db-data-config.xml。

首先打开db-data-config.xml,修改为以下内容:

<dataConfig>

<dataSource name="sgk" type="JdbcDataSource" driver="com.mysql.jdbc.Driver" url="jdbc:mysql://127.0.0.1:3306/newsgk" user="root" password="password" batchSize="-1" />

<document name="mysgk">

<entity name="b41sgk" pk="id" query="select * from b41sgk">

<field column="id" name="id"/>

<field column="username" name="username"/>

<field column="email" name="email"/>

<field column="password" name="password"/>

<field column="salt" name="salt"/>

<field column="ip" name="ip"/>

<field column="site" name="site"/>

</entity>

</document>

</dataConfig>

这个文件是负责配置导入数据源的,请按照mysql实际的设置修改datasource的内容,下面entity的内容必须严格按照mysql中社工库表的结构填写,列名要和数据库中的完全一样。

然后打开solrconfig.xml,先找到这一段:

<schemaFactory class="ManagedIndexSchemaFactory">

<bool name="mutable">true</bool>

<str name="managedSchemaResourceName">managed-schema</str>

</schemaFactory>

把它全部注释掉,加上一行,改成这样:

<!-- <schemaFactory class="ManagedIndexSchemaFactory">

<bool name="mutable">true</bool>

<str name="managedSchemaResourceName">managed-schema</str>

</schemaFactory>-->

<schemaFactory class="ClassicIndexSchemaFactory"/>

这是因为solr5 以上默认使用managed-schema管理schema,需要更改为可以手动修改。

然后我们还需要关闭suggest,它提供搜索智能提示,在社工库中我们用不到这样的功能,重要的是,suggest会严重的拖慢solr的启动速度,在十几亿数据的情况下,开启suggest可能会导致solr启动加载core长达几个小时!

同样在solrconfig.xml中,找到这一段:

<searchComponent name="suggest" class="solr.SuggestComponent">

<lst name="suggester">

<str name="name">mySuggester</str>

<str name="lookupImpl">FuzzyLookupFactory</str> <!-- org.apache.solr.spelling.suggest.fst -->

<str name="dictionaryImpl">DocumentDictionaryFactory</str><!-- org.apache.solr.spelling.suggest.HighFrequencyDictionaryFactory -->

<str name="field">cat</str>

<str name="weightField">price</str>

<str name="suggestAnalyzerFieldType">string</str>

</lst>

</searchComponent>

<requestHandler name="/suggest" class="solr.SearchHandler" startup="lazy">

<lst name="defaults">

<str name="suggest">true</str>

<str name="suggest.count">10</str>

</lst>

<arr name="components">

<str>suggest</str>

</arr>

</requestHandler>

把这些全部删除,然后保存solrconfig.xml文件。

接下来把managed-schema拷贝一份,重命名为schema.xml (原文件不要删除),打开并找到以下位置:

只保留_version_和_root_节点,然后把所有的field,dynamicField和copyField全部删除,添加以下的部分:

<field name="id" type="int" indexed="true" stored="true" required="true" multiValued="false" />

<field name="username" type="text_ik" indexed="true" stored="true"/>

<field name="email" type="text_ik" indexed="true" stored="true"/>

<field name="password" type="text_general" indexed="true" stored="true"/>

<field name="salt" type="text_general" indexed="true" stored="true"/>

<field name="ip" type="text_general" indexed="true" stored="true"/>

<field name="site" type="text_general" indexed="true" stored="true"/>

<field name="keyword" type="text_ik" indexed="true" stored="false" multiValued="true"/>

<copyField source="username" dest="keyword"/>

<copyField source="email" dest="keyword"/>

<uniqueKey>id</uniqueKey>

这里的uniqueKey是配置文件中原有的,用来指定索引字段,必须保留。新建了一个字段名为keyword,它的用途是联合查询,即当需要同时以多个字段做关键字查询时,可以用这一个字段名代替,增加查询效率,下面的copyField即用来指定复制哪些字段到keyword。注意keyword这样的字段,后面的multiValued属性必须为true。

username和email以及keyword这三个字段,用来检索查询关键字,它们的类型我们指定为text_ik,这是一个我们创造的类型,因为solr虽然内置中文分词,但效果并不好,我们需要添加IKAnalyzer中文分词引擎来查询中文。在下载IKAnalyzer for solr5的源码包,然后使用Maven编译,得到一个文件IKAnalyzer-5.0.jar,把它放入solr-5.5.0/server/solr-webapp/webapp/WEB-INF/lib目录中,然后在solrconfig.xml的fieldType部分加入以下内容:

<fieldType name="text_ik" class="solr.TextField">

<analyzer type="index" useSmart="false" class="org.wltea.analyzer.lucene.IKAnalyzer"/>

<analyzer type="query" useSmart="true" class="org.wltea.analyzer.lucene.IKAnalyzer"/>

</fieldType>

保存后,core的配置就算完成了,不过要导入mysql数据,我们还需要在mysql网站上下载mysql-connector-java-bin.jar库文件,连同solr-5.5.0/dist目录下面的solr-dataimporthandler-5.5.0.jar,solr-dataimporthandler-extras-5.5.0.jar两个文件,全部拷贝到solr-5.5.0/server/solr-webapp/webapp/WEB-INF/lib目录中,然后重启solr,就可以开始数据导入工作了。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7383757.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-05
下一篇 2023-04-05

发表评论

登录后才能评论

评论列表(0条)

保存