mytable
中,对应的字段分别为field1,field2,field3,field4.
二、在excel表格中增加一列(?excel应该是E列),利用excel的公式自动生成SQL语句(这个很重要,别写错了),具体方法
如下:
1、增加一列(excel应该是E列,因为我们原有4列数据,分别为A\B\C\D列)
2、在第一行(这一行必须为有效数据行否则出错)的E列,就是E1中输入公式=CONCATENATE("insert
into
table
(field1,field2,field3,field4)
values
('",A1,"','",B1,"','",C1,"','",D1,"')")
3、此时E1已经生成如下的SQL语句:
insert
into
mytable
(field1,field2,field3、field4)
values
('A1中
的数据','B1','C1','D1')
4、将E1的公式复制到所有行的E列,(就是用鼠标点住E1单元格的右下角,一直拖拽下去,到最后一行数据)
5、此时E列已经生成了所有的SQL语句
6、选中E列把E列数据复制到一个纯文本文件中,命名为
例如:excel.txt
三、把excel.txt
放到数据库中运行即可,可通过命令行导入
source
f:\excel.txt
首先我们需要在mysql管理工具上面新建一个表,也可以用mysql命令创建,表建立完成之后,你需要将表中的字段名字告诉给填写excel表的人员.打开excel表,按照程序提供的字段填写相应的数据.此时注意下面几点:名字(我用红色标示出来了)需要跟程序提供的一样,其他的描述,表头可以不写都行.
我使用的mysql管理工具是Navicat for MySQL,打开工具,选择表所在的数据库,然后点击数据库名字,右键数据,出来下拉菜单选择import wizard ,有汉化版本的更明确.d出一个选择界面,我们选择excel file文件
点击next(下一步),我们选择我们对应的excel文件就行,然后再下面选在我们的文件内容在哪一个sheet中,也就是你的内容写在excel什么地方,这点需要注意,也是关键的地方,我的内容在sheet3中,所以我选择sheet3 ,如图:
点击next (此步骤也是关键步骤),需要注意2点: 1:filed name row 就是你的字段所在excel中的位置,也就是第几行(简单办法,一般就是英文对应的那一列).2:first data row(从哪一行开始执行),数据从哪一行开始呢,我这里选择的是3,4.
点击next 我们选择 target table 目标对应的数据库,选择你要导入到哪个数据库中表中.
如果到上面一步没有问题的话,我们默认next到最后 就行了.然后打开表就能看到数据跟excel表中的一样.
先贴原来的导入数据代码:48304ba5e6f9fe08f3fa1abda7d326ab.png
8
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "www.settings")
'''
Django 版本大于等于1.7的时候,需要加上下面两句
import django
django.setup()
否则会抛出错误 django.core.exceptions.AppRegistryNotReady: Models aren't loaded yet.
'''
import django
if django.VERSION >= (1, 7):#自动判断版本
django.setup()
from arrears.models import D072Qf
import xlrd #excel读工具
from datetime import datetime
from xlrd import xldate_as_tuple
import time
import random
time1 = time.time()
#data= xlrd.open_workbook('11.xlsx') 打开文件
with xlrd.open_workbook('11.xlsx') as data:
print u"读取文件结束,开始导入!"
time2 = time.time()
table = data.sheet_by_index(0) #获取工作表
time3 = time.time()
n=1
x = y = z = 0
WorkList = []
for line in range(n,table.nrows):#nrows = table.nrows #行数 ncols = table.ncols #列数 print sh.row_values(rownum)
row = table.row_values(line)
if row: #查看行值是否为空
for i in [0,1,2,4,28,30,32]:
if type(row[i]) == float:
row[i] = int(row[i])
if D072Qf.objects.filter(acct_month = row[0],serv_id=row[1]).exists():#判断该行值是否在数据库中重复
x = x + 1 #重复值计数
else:
WorkList.append(D072Qf(acct_month=row[0],serv_id=row[1],acc_nbr=row[2],user_name=row[3],acct_code=row[4],
acct_name=row[5],product_name=row[6],current_charge=row[7],one_charge=row[8],
two_charge=row[9],three_charge=row[10],four_charge=row[11],five_charge=row[12],
six_charge=row[13],seven_charge=row[14],eight_charge=row[15],nine_charge=row[16],
ten_charge=row[17],eleven_charge=row[18],twelve_charge=row[19],oneyear_charge=row[20],
threeyear_charge=row[21],upthreeyear_charge=row[22],all_qf=row[23],morethree_qf=row[24],
aging=row[25],serv_state_name=row[26],mkt_chnl_name=row[27],mkt_chnl_id=row[28],
mkt_region_name=row[29],mkt_region_id=row[30],mkt_grid_name=row[31],mkt_grid_id=row[32],
prod_addr=row[33]))
y = y + 1 #非重复计数
else:
z = z + 1 #空行值计数
n = n + 1
if n % 9999 == 0:
D072Qf.objects.bulk_create(WorkList)
WorkList = []
time.sleep(random.random()) #让Cpu随机休息0 <= n <1.0 s
print "导入成功一次!"
print '数据导入成功,导入'+str(y)+'条,重复'+str(x)+'条,有'+str(z)+'行为空!'
time4 = time.time()
print "读取文件耗时"+str(time2-time1)+"秒,导入数据耗时"+str(time4-time3)+"秒!"
48304ba5e6f9fe08f3fa1abda7d326ab.png
这条代码目前未全部将十几万行数据全部导入数据库中,只花了1个小时把5万行数据导入其中后,后面越来越慢,主要慢在excel表到了7万行数据左右后,读取excel中数据很慢了,总体来说影响导入速度有几个原因:
1、一直以来采用xlrd导入xls格式文件,如果文件有十几万行,只是读取文件就会花200秒,若换成csv则几乎不花时间
2、代码中这行语句也会影响速度,特别当数据库中数据很大时:if D072Qf.objects.filter(acct_month = row[0],serv_id=row[1]).exists():#判断该行值是否在数据库中重复
3、若一次性将字典添加十几万行数据,就windows的cpu而已是遭受不住的!所以建议1万条数据导入一次后,清空列表
改善后的代码:
优化部分:采用csv格式取消掉检查重复数据语句每5万导入一次数据
48304ba5e6f9fe08f3fa1abda7d326ab.png
#coding:utf-8
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "www.settings")
'''
Django 版本大于等于1.7的时候,需要加上下面两句
import django
django.setup()
否则会抛出错误 django.core.exceptions.AppRegistryNotReady: Models aren't loaded yet.
'''
import django
if django.VERSION >= (1, 7):#自动判断版本
django.setup()
from arrears.models import D072Qf
import time
import random
time1 = time.time()
f = open('11.csv')
print u"读取文件结束,开始导入!"
time2 = time.time()
WorkList = []
next(f) #将文件标记移到下一行
y = 0
n = 1
for line in f:
row = line.replace('"','') #将字典中的"替换空
row = row.split('') #按对字符串进行切片
y = y + 1
WorkList.append(D072Qf(acct_month=row[0],serv_id=row[1],acc_nbr=row[2],user_name=row[3],acct_code=row[4],
acct_name=row[5],product_name=row[6],current_charge=row[7],one_charge=row[8],
two_charge=row[9],three_charge=row[10],four_charge=row[11],five_charge=row[12],
six_charge=row[13],seven_charge=row[14],eight_charge=row[15],nine_charge=row[16],
ten_charge=row[17],eleven_charge=row[18],twelve_charge=row[19],oneyear_charge=row[20],
threeyear_charge=row[21],upthreeyear_charge=row[22],all_qf=row[23],morethree_qf=row[24],
aging=row[25],serv_state_name=row[26],mkt_chnl_name=row[27],mkt_chnl_id=row[28],
mkt_region_name=row[29],mkt_region_id=row[30],mkt_grid_name=row[31],mkt_grid_id=row[32],
prod_addr=row[33]))
n = n + 1
if n%50000==0:
print n
D072Qf.objects.bulk_create(WorkList)
WorkList = []
time3 = time.time()
print "读取文件耗时"+str(time2-time1)+"秒,导入数据耗时"+str(time3-time2)+"秒!"
time3 = time.time()
print n
D072Qf.objects.bulk_create(WorkList)
print "读取文件耗时"+str(time2-time1)+"秒,导入数据耗时"+str(time3-time2)+"秒!"
WorkList = []
print "成功导入数据"+str(y)+"条"
f.close()
48304ba5e6f9fe08f3fa1abda7d326ab.png
结果让人大吃一惊!!!,只耗时73秒
48304ba5e6f9fe08f3fa1abda7d326ab.png
Python 2.7.10 (default, May 23 2015, 09:40:32) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>>================================ RESTART ================================
>>>
读取文件结束,开始导入!
50000
读取文件耗时0.0秒,导入数据耗时34.3279998302秒!
100000
读取文件耗时0.0秒,导入数据耗时67.3599998951秒!
138400
读取文件耗时0.0秒,导入数据耗时73.4379999638秒!
成功导入数据138399条
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)