MySQL索引使用限制有哪些

MySQL索引使用限制有哪些,第1张

在满足语句需求的情况下,尽量少的访问资源是数据库设计的重要原则,这和执行的 SQL 有直接的关系,索引问题又是 SQL 问题中出现频率最高的,常见的索引问题包括:无索引(失效)、隐式转换。

1. SQL 执行流程看一个问题,在下面这个表 T 中,如果我要执行 select * from T where k between 3 and 5需要执行几次树的搜索 *** 作,会扫描多少行?mysql>create table T (    ->ID int primary key,    ->k int NOT NULL DEFAULT 0,    ->s varchar(16) NOT NULL DEFAULT '',    ->index k(k))    ->engine=InnoDBmysql>insert into T values(100,1, 'aa'),(200,2,'bb'),\      (300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg')

这分别是 ID 字段索引树、k 字段索引树。

这条 SQL 语句的执行流程:

1. 在 k 索引树上找到 k=3,获得 ID=3002. 回表到 ID 索引树查找 ID=300 的记录,对应 R33. 在 k 索引树找到下一个值 k=5,ID=5004. 再回到 ID 索引树找到对应 ID=500 的 R4

5. 在 k 索引树去下一个值 k=6,不符合条件,循环结束

这个过程读取了 k 索引树的三条记录,回表了两次。因为查询结果所需要的数据只在主键索引上有,所以必须得回表。所以,我们该如何通过优化索引,来避免回表呢?

2. 常见索引优化2.1 覆盖索引覆盖索引,换言之就是索引要覆盖我们的查询请求,无需回表。

如果执行的语句是 select ID from T wherek between 3 and 5,这样的话因为 ID 的值在 k 索引树上,就不需要回表了。

覆盖索引可以减少树的搜索次数,显著提升查询性能,是常用的性能优化手段。

但是,维护索引是有代价的,所以在建立冗余索引来支持覆盖索引时要权衡利弊。

2.2 最左前缀原则

B+ 树的数据项是复合的数据结构,比如 (name,sex,age) 的时候,B+ 树是按照从左到右的顺序来建立搜索树的,当 (张三,F,26) 这样的数据来检索的时候,B+ 树会优先比较 name 来确定下一步的检索方向,如果 name 相同再依次比较 sex 和 age,最后得到检索的数据。

# 有这样一个表 P

mysql>create table P (id int primary key, name varchar(10) not null, sex varchar(1), age int, index tl(name,sex,age)) engine=IInnoDB

mysql>insert into P values(1,'张三','F',26),(2,'张三','M',27),(3,'李四','F',28),(4,'乌兹','F',22),(5,'张三','M',21),(6,'王五','M',28)

# 下面的语句结果相同

mysql>select * from P where name='张三' and sex='F'    ## A1

mysql>select * from P where sex='F' and age=26        ## A2

# explain 看一下

mysql>explain select * from P where name='张三' and sex='F'

+----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref         | rows | filtered | Extra       |

+----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

|  1 | SIMPLE      | P     | NULL       | ref  | tl            | tl   | 38      | const,const |    1 |   100.00 | Using index |

+----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

mysql>explain select * from P where sex='F' and age=26

+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

| id | select_type | table | partitions | type  | possible_keys | key  | key_len | ref  | rows | filtered | Extra                    |

+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

|  1 | SIMPLE      | P     | NULL       | index | NULL          | tl   | 43      | NULL |    6 |    16.67 | Using whereUsing index |

+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

可以清楚的看到,A1 使用 tl 索引,A2 进行了全表扫描,虽然 A2 的两个条件都在 tl 索引中出现,但是没有使用到 name 列,不符合最左前缀原则,无法使用索引。所以在建立联合索引的时候,如何安排索引内的字段排序是关键。评估标准是索引的复用能力,因为支持最左前缀,所以当建立(a,b)这个联合索引之后,就不需要给 a 单独建立索引。原则上,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。上面这个例子中,如果查询条件里只有 b,就是没法利用(a,b)这个联合索引的,这时候就不得不维护另一个索引,也就是说要同时维护(a,b)、(b)两个索引。这样的话,就需要考虑空间占用了,比如,name 和 age 的联合索引,name 字段比 age 字段占用空间大,所以创建(name,age)联合索引和(age)索引占用空间是要小于(age,name)、(name)索引的。

2.3 索引下推

以人员表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是26岁的所有男性”。那么,SQL 语句是这么写的mysql>select * from tuser where name like '张%' and age=26 and sex=M

通过最左前缀索引规则,会找到 ID1,然后需要判断其他条件是否满足在 MySQL 5.6 之前,只能从 ID1 开始一个个回表。到主键索引上找出数据行,再对比字段值。而 MySQL 5.6 引入的索引下推优化(index condition pushdown),可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。这样,减少了回表次数和之后再次过滤的工作量,明显提高检索速度。

2.4 隐式类型转化

隐式类型转化主要原因是,表结构中指定的数据类型与传入的数据类型不同,导致索引无法使用。所以有两种方案: 修改表结构,修改字段数据类型。

修改应用,将应用中传入的字符类型改为与表结构相同类型。

3. 为什么会选错索引3.1 优化器选择索引是优化器的工作,其目的是找到一个最优的执行方案,用最小的代价去执行语句。在数据库中,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。

3.2 扫描行数

MySQL 在真正开始执行语句之前,并不能精确的知道满足这个条件的记录有多少条,只能通过索引的区分度来判断。显然,一个索引上不同的值越多,索引的区分度就越好,而一个索引上不同值的个数我们称为“基数”,也就是说,这个基数越大,索引的区分度越好。# 通过 show index 方法,查看索引的基数mysql>show index from t+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| t     |          0 | PRIMARY  |            1 | id          | A         |       95636 |     NULL | NULL   |      | BTREE      |         |               || t     |          1 | a        |            1 | a           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               || t     |          1 | b        |            1 | b           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+

MySQL 使用采样统计方法来估算基数:采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计。

在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:

on 表示统计信息会持久化存储。默认 N = 20,M = 10。

off 表示统计信息只存储在内存中。默认 N = 8,M = 16。

由于是采样统计,所以不管 N 是 20 还是 8,这个基数都很容易不准确。所以,冤有头债有主,MySQL 选错索引,还得归咎到没能准确地判断出扫描行数。

可以用 analyze table 来重新统计索引信息,进行修正。

ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

3.3 索引选择异常和处理1. 采用 force index 强行选择一个索引。2. 可以考虑修改语句,引导 MySQL 使用我们期望的索引。3. 有些场景下,可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。

MySQL索引类型包括:

一、普通索引

这是最基本的索引,它没有任何限制。有以下几种创建方式:

1.创建索引

代码如下:

CREATE INDEX indexName ON mytable(username(length))

如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length,下同。

2.修改表结构

代码如下:

ALTER mytable ADD INDEX [indexName] ON (username(length)) -- 创建表的时候直接指定。

CREATE TABLE mytable( ID INT NOT NULL,username VARCHAR(16) NOT NULL, INDEX [indexName] (username(length)) )

-- 删除索引的语法:

DROP INDEX [indexName] ON mytable

二、唯一索引

它与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:

代码如下:

CREATE UNIQUE INDEX indexName ON mytable(username(length))

-- 修改表结构

ALTER mytable ADD UNIQUE [indexName] ON (username(length))

-- 创建表的时候直接指定

CREATE TABLE mytable( ID INT NOT NULL,username VARCHAR(16) NOT NULL, UNIQUE [indexName] (username(length)) )

三、主键索引

它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引:

代码如下:

CREATE TABLE mytable( ID INT NOT NULL,username VARCHAR(16) NOT NULL, PRIMARY KEY(ID) )

当然也可以用 ALTER 命令。记住:一个表只能有一个主键。

四、组合索引

为了形象地对比单列索引和组合索引,为表添加多个字段:

代码如下:

CREATE TABLE mytable( ID INT NOT NULL,username VARCHAR(16) NOT NULL, city VARCHAR(50) NOT NULL, age INT NOT NULL )

为了进一步榨取MySQL的效率,就要考虑建立组合索引。

二:使用索引的注意事项

使用索引时,有以下一些技巧和注意事项:

1.索引不会包含有NULL值的列

只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NULL。

2.使用短索引

对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果在前10个或20个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O *** 作。

3.索引列排序

MySQL查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序 *** 作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。

4.like语句 *** 作

一般情况下不鼓励使用like *** 作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引而like “aaa%”可以使用索引。

5.不要在列上进行运算

select * from users where YEAR(adddate)<2007

将在每个行上进行运算,这将导致索引失效而进行全表扫描,因此我们可以改成:

select * from users where adddate<‘2007-01-01'

6.不使用NOT IN和<> *** 作。

三:sql优化原则

常见的简化规则如下:

1.不要有超过5个以上的表连接(JOIN)

2.考虑使用临时表或表变量存放中间结果。

3.少用子查询

4.视图嵌套不要过深,一般视图嵌套不要超过2个为宜。

5.连接的表越多,其编译的时间和连接的开销也越大,性能越不好控制。

6.最好是把连接拆开成较小的几个部分逐个顺序执行。

7.优先执行那些能够大量减少结果的连接。

8.拆分的好处不仅仅是减少SQL Server优化的时间,更使得SQL语句能够以你可以预测的方式和顺序执行。

如果一定需要连接很多表才能得到数据,那么很可能意味着设计上的缺陷。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7474300.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-06
下一篇 2023-04-06

发表评论

登录后才能评论

评论列表(0条)

保存