1、使用MYSQLI_ASYNC模式执行mysqli::query
2、获取异步查询结果:mysqli::reap_async_query
使用mysql异步查询,需要使用mysqlnd作为PHP的MySQL数据库驱动。
使用MySQL异步查询,因为需要给所有查询都创建一个新的连接,而MySQL服务端会为每个连接创建一个单独的线程进行处理,如果创建的线程过多,则会造成线程切换引起系统负载过高。Swoole中的异步MySQL其原理是通过MYSQLI_ASYNC模式查询,然后获取mysql连接的socket,加入到epoll事件循环中,当数据库返回结果时会回调指定函数,这个过程是完全异步非阻塞的。
epoll是linux中IO多路复用的一种机制,I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写 *** 作。当然linux中IO多路复用不仅仅是epoll,其他多路复用机制还有select、poll,但是接下来介绍epoll的内核实现。
events可以是以下几个宏的集合:
epoll相比select/poll的优势 :
epoll相关的内核代码在fs/eventpoll.c文件中,下面分别分析epoll_create、epoll_ctl和epoll_wait三个函数在内核中的实现,分析所用linux内核源码为4.1.2版本。
epoll_create用于创建一个epoll的句柄,其在内核的系统实现如下:
sys_epoll_create:
可见,我们在调用epoll_create时,传入的size参数,仅仅是用来判断是否小于等于0,之后再也没有其他用处。
整个函数就3行代码,真正的工作还是放在sys_epoll_create1函数中。
sys_epoll_create ->sys_epoll_create1:
sys_epoll_create1 函数流程如下:
sys_epoll_create ->sys_epoll_create1 ->ep_alloc:
sys_epoll_create ->sys_epoll_create1 ->ep_alloc ->get_unused_fd_flags:
linux内核中,current是个宏,返回的是一个task_struct结构(我们称之为进程描述符)的变量,表示的是当前进程,进程打开的文件资源保存在进程描述符的files成员里面,所以current->files返回的当前进程打开的文件资源。rlimit(RLIMIT_NOFILE) 函数获取的是当前进程可以打开的最大文件描述符数,这个值可以设置,默认是1024。
相关视频推荐:
支撑亿级io的底层基石 epoll实战揭秘
网络原理tcp/udp,网络编程epoll/reactor,面试中正经“八股文”
学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂
需要更多C/C++ Linux服务器架构师学习资料加群 812855908 获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享
__alloc_fd的工作是为进程在[start,end)之间(备注:这里start为0, end为进程可以打开的最大文件描述符数)分配一个可用的文件描述符,这里就不继续深入下去了,代码如下:
sys_epoll_create ->sys_epoll_create1 ->ep_alloc ->get_unused_fd_flags ->__alloc_fd:
然后,epoll_create1会调用anon_inode_getfile,创建一个file结构,如下:
sys_epoll_create ->sys_epoll_create1 ->anon_inode_getfile:
anon_inode_getfile函数中首先会alloc一个file结构和一个dentry结构,然后将该file结构与一个匿名inode节点anon_inode_inode挂钩在一起,这里要注意的是,在调用anon_inode_getfile函数申请file结构时,传入了前面申请的eventpoll结构的ep变量,申请的file->private_data会指向这个ep变量,同时,在anon_inode_getfile函数返回来后,ep->file会指向该函数申请的file结构变量。
简要说一下file/dentry/inode,当进程打开一个文件时,内核就会为该进程分配一个file结构,表示打开的文件在进程的上下文,然后应用程序会通过一个int类型的文件描述符来访问这个结构,实际上内核的进程里面维护一个file结构的数组,而文件描述符就是相应的file结构在数组中的下标。
dentry结构(称之为“目录项”)记录着文件的各种属性,比如文件名、访问权限等,每个文件都只有一个dentry结构,然后一个进程可以多次打开一个文件,多个进程也可以打开同一个文件,这些情况,内核都会申请多个file结构,建立多个文件上下文。但是,对同一个文件来说,无论打开多少次,内核只会为该文件分配一个dentry。所以,file结构与dentry结构的关系是多对一的。
同时,每个文件除了有一个dentry目录项结构外,还有一个索引节点inode结构,里面记录文件在存储介质上的位置和分布等信息,每个文件在内核中只分配一个inode。 dentry与inode描述的目标是不同的,一个文件可能会有好几个文件名(比如链接文件),通过不同文件名访问同一个文件的权限也可能不同。dentry文件所代表的是逻辑意义上的文件,记录的是其逻辑上的属性,而inode结构所代表的是其物理意义上的文件,记录的是其物理上的属性。dentry与inode结构的关系是多对一的关系。
sys_epoll_create ->sys_epoll_create1 ->fd_install:
总结epoll_create函数所做的事:调用epoll_create后,在内核中分配一个eventpoll结构和代表epoll文件的file结构,并且将这两个结构关联在一块,同时,返回一个也与file结构相关联的epoll文件描述符fd。当应用程序 *** 作epoll时,需要传入一个epoll文件描述符fd,内核根据这个fd,找到epoll的file结构,然后通过file,获取之前epoll_create申请eventpoll结构变量,epoll相关的重要信息都存储在这个结构里面。接下来,所有epoll接口函数的 *** 作,都是在eventpoll结构变量上进行的。
所以,epoll_create的作用就是为进程在内核中建立一个从epoll文件描述符到eventpoll结构变量的通道。
epoll_ctl接口的作用是添加/修改/删除文件的监听事件,内核代码如下:
sys_epoll_ctl:
根据前面对epoll_ctl接口的介绍,op是对epoll *** 作的动作(添加/修改/删除事件),ep_op_has_event(op)判断是否不是删除 *** 作,如果op != EPOLL_CTL_DEL为true,则需要调用copy_from_user函数将用户空间传过来的event事件拷贝到内核的epds变量中。因为,只有删除 *** 作,内核不需要使用进程传入的event事件。
接着连续调用两次fdget分别获取epoll文件和被监听文件(以下称为目标文件)的file结构变量(备注:该函数返回fd结构变量,fd结构包含file结构)。
接下来就是对参数的一些检查,出现如下情况,就可以认为传入的参数有问题,直接返回出错:
当然下面还有一些关于 *** 作动作如果是添加 *** 作的判断,这里不做解释,比较简单,自行阅读。
在ep里面,维护着一个红黑树,每次添加注册事件时,都会申请一个epitem结构的变量表示事件的监听项,然后插入ep的红黑树里面。在epoll_ctl里面,会调用ep_find函数从ep的红黑树里面查找目标文件表示的监听项,返回的监听项可能为空。
接下来switch这块区域的代码就是整个epoll_ctl函数的核心,对op进行switch出来的有添加(EPOLL_CTL_ADD)、删除(EPOLL_CTL_DEL)和修改(EPOLL_CTL_MOD)三种情况,这里我以添加为例讲解,其他两种情况类似,知道了如何添加监听事件,其他删除和修改监听事件都可以举一反三。
为目标文件添加监控事件时,首先要保证当前ep里面还没有对该目标文件进行监听,如果存在(epi不为空),就返回-EEXIST错误。否则说明参数正常,然后先默认设置对目标文件的POLLERR和POLLHUP监听事件,然后调用ep_insert函数,将对目标文件的监听事件插入到ep维护的红黑树里面:
sys_epoll_ctl ->ep_insert:
前面说过,对目标文件的监听是由一个epitem结构的监听项变量维护的,所以在ep_insert函数里面,首先调用kmem_cache_alloc函数,从slab分配器里面分配一个epitem结构监听项,然后对该结构进行初始化,这里也没有什么好说的。我们接下来看ep_item_poll这个函数调用:
sys_epoll_ctl ->ep_insert ->ep_item_poll:
ep_item_poll函数里面,调用目标文件的poll函数,这个函数针对不同的目标文件而指向不同的函数,如果目标文件为套接字的话,这个poll就指向sock_poll,而如果目标文件为tcp套接字来说,这个poll就是tcp_poll函数。虽然poll指向的函数可能会不同,但是其作用都是一样的,就是获取目标文件当前产生的事件位,并且将监听项绑定到目标文件的poll钩子里面(最重要的是注册ep_ptable_queue_proc这个poll callback回调函数),这步 *** 作完成后,以后目标文件产生事件就会调用ep_ptable_queue_proc回调函数。
接下来,调用list_add_tail_rcu将当前监听项添加到目标文件的f_ep_links链表里面,该链表是目标文件的epoll钩子链表,所有对该目标文件进行监听的监听项都会加入到该链表里面。
然后就是调用ep_rbtree_insert,将epi监听项添加到ep维护的红黑树里面,这里不做解释,代码如下:
sys_epoll_ctl ->ep_insert ->ep_rbtree_insert:
前面提到,ep_insert有调用ep_item_poll去获取目标文件产生的事件位,在调用epoll_ctl前这段时间,可能会产生相关进程需要监听的事件,如果有监听的事件产生,(revents &event->events 为 true),并且目标文件相关的监听项没有链接到ep的准备链表rdlist里面的话,就将该监听项添加到ep的rdlist准备链表里面,rdlist链接的是该epoll描述符监听的所有已经就绪的目标文件的监听项。并且,如果有任务在等待产生事件时,就调用wake_up_locked函数唤醒所有正在等待的任务,处理相应的事件。当进程调用epoll_wait时,该进程就出现在ep的wq等待队列里面。接下来讲解epoll_wait函数。
总结epoll_ctl函数:该函数根据监听的事件,为目标文件申请一个监听项,并将该监听项挂人到eventpoll结构的红黑树里面。
epoll_wait等待事件的产生,内核代码如下:
sys_epoll_wait:
首先是对进程传进来的一些参数的检查:
参数全部检查合格后,接下来就调用ep_poll函数进行真正的处理:
sys_epoll_wait ->ep_poll:
ep_poll中首先是对等待时间的处理,timeout超时时间以ms为单位,timeout大于0,说明等待timeout时间后超时,如果timeout等于0,函数不阻塞,直接返回,小于0的情况,是永久阻塞,直到有事件产生才返回。
当没有事件产生时((!ep_events_available(ep))为true),调用__add_wait_queue_exclusive函数将当前进程加入到ep->wq等待队列里面,然后在一个无限for循环里面,首先调用set_current_state(TASK_INTERRUPTIBLE),将当前进程设置为可中断的睡眠状态,然后当前进程就让出cpu,进入睡眠,直到有其他进程调用wake_up或者有中断信号进来唤醒本进程,它才会去执行接下来的代码。
如果进程被唤醒后,首先检查是否有事件产生,或者是否出现超时还是被其他信号唤醒的。如果出现这些情况,就跳出循环,将当前进程从ep->wp的等待队列里面移除,并且将当前进程设置为TASK_RUNNING就绪状态。
如果真的有事件产生,就调用ep_send_events函数,将events事件转移到用户空间里面。
sys_epoll_wait ->ep_poll ->ep_send_events:
ep_send_events没有什么工作,真正的工作是在ep_scan_ready_list函数里面:
sys_epoll_wait ->ep_poll ->ep_send_events ->ep_scan_ready_list:
ep_scan_ready_list首先将ep就绪链表里面的数据链接到一个全局的txlist里面,然后清空ep的就绪链表,同时还将ep的ovflist链表设置为NULL,ovflist是用单链表,是一个接受就绪事件的备份链表,当内核进程将事件从内核拷贝到用户空间时,这段时间目标文件可能会产生新的事件,这个时候,就需要将新的时间链入到ovlist里面。
仅接着,调用sproc回调函数(这里将调用ep_send_events_proc函数)将事件数据从内核拷贝到用户空间。
sys_epoll_wait ->ep_poll ->ep_send_events ->ep_scan_ready_list ->ep_send_events_proc:
ep_send_events_proc回调函数循环获取监听项的事件数据,对每个监听项,调用ep_item_poll获取监听到的目标文件的事件,如果获取到事件,就调用__put_user函数将数据拷贝到用户空间。
回到ep_scan_ready_list函数,上面说到,在sproc回调函数执行期间,目标文件可能会产生新的事件链入ovlist链表里面,所以,在回调结束后,需要重新将ovlist链表里面的事件添加到rdllist就绪事件链表里面。
同时在最后,如果rdlist不为空(表示是否有就绪事件),并且由进程等待该事件,就调用wake_up_locked再一次唤醒内核进程处理事件的到达(流程跟前面一样,也就是将事件拷贝到用户空间)。
到这,epoll_wait的流程是结束了,但是有一个问题,就是前面提到的进程调用epoll_wait后会睡眠,但是这个进程什么时候被唤醒呢?在调用epoll_ctl为目标文件注册监听项时,对目标文件的监听项注册一个ep_ptable_queue_proc回调函数,ep_ptable_queue_proc回调函数将进程添加到目标文件的wakeup链表里面,并且注册ep_poll_callbak回调,当目标文件产生事件时,ep_poll_callbak回调就去唤醒等待队列里面的进程。
总结一下epoll该函数: epoll_wait函数会使调用它的进程进入睡眠(timeout为0时除外),如果有监听的事件产生,该进程就被唤醒,同时将事件从内核里面拷贝到用户空间返回给该进程。
one-connection-per-thread根据scheduler_functions的模板,我们也可以列出one-connection-per-thread方式的几个关键函数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
static scheduler_functions con_per_functions=
{ max_connection+1, // max_threads
NULL,
NULL,
NULL, // init
Init_new_connection_handler_thread, // init_new_connection_thread
create_thread_to_handle_connection, // add_connection
NULL, // thd_wait_begin
NULL, // thd_wait_end
NULL, // post_kill_notification
one_thread_per_connection_end, // end_thread
NULL // end
}
1.init_new_connection_handler_thread
这个接口比较简单,主要是调用pthread_detach,将线程设置为detach状态,线程结束后自动释放所有资源。
2.create_thread_to_handle_connection
这个接口是处理新连接的接口,对于线程池而言,会从thread_id%group_size对应的group中获取一个线程来处理,而one-connection-per-thread方式则会判断是否有thread_cache可以使用,如果没有则新建线程来处理。具体逻辑如下:
(1).判断缓存的线程数是否使用完(比较blocked_pthread_count 和wake_pthread大小)
(2).若还有缓存线程,将thd加入waiting_thd_list的队列,唤醒一个等待COND_thread_cache的线程
(3).若没有,创建一个新的线程处理,线程的入口函数是do_handle_one_connection
(4).调用add_global_thread加入thd数组。
3.do_handle_one_connection
这个接口被create_thread_to_handle_connection调用,处理请求的主要实现接口。
(1).循环调用do_command,从socket中读取网络包,并且解析执行;
(2). 当远程客户端发送关闭连接COMMAND(比如COM_QUIT,COM_SHUTDOWN)时,退出循环
(3).调用close_connection关闭连接(thd->disconnect())
(4).调用one_thread_per_connection_end函数,确认是否可以复用线程
(5).根据返回结果,确定退出工作线程还是继续循环执行命令。
4.one_thread_per_connection_end
判断是否可以复用线程(thread_cache)的主要函数,逻辑如下:
(1).调用remove_global_thread,移除线程对应的thd实例
(2).调用block_until_new_connection判断是否可以重用thread
(3).判断缓存的线程是否超过阀值,若没有,则blocked_pthread_count++
(4).阻塞等待条件变量COND_thread_cache
(5).被唤醒后,表示有新的thd需要重用线程,将thd从waiting_thd_list中移除,使用thd初始化线程的thd->thread_stack
(6).调用add_global_thread加入thd数组。
(7).如果可以重用,返回false,否则返回ture
线程池与epoll
在引入线程池之前,server层只有一个监听线程,负责监听mysql端口和本地unixsocket的请求,对于每个新的连接,都会分配一个独立线程来处理,因此监听线程的任务比较轻松,mysql通过poll或select方式来实现IO的多路复用。引入线程池后,除了server层的监听线程,每个group都有一个监听线程负责监听group内的所有连接socket的连接请求,工作线程不负责监听,只处理请求。对于overscribe为1000的线程池设置,每个监听线程需要监听1000个socket的请求,监听线程采用epoll方式来实现监听。
Select,poll,epoll都是IO多路复用机制,IO多路复用通过一种机制,可以监听多个fd(描述符),比如socket,一旦某个fd就绪(读就绪或写就绪),能够通知程序进行相应的读写 *** 作。epoll相对于select和poll有了很大的改进,首先epoll通过epoll_ctl函数注册,注册时,将所有fd拷贝进内核,只拷贝一次不需要重复拷贝,而每次调用poll或select时,都需要将fd集合从用户空间拷贝到内核空间(epoll通过epoll_wait进行等待);其次,epoll为每个描述符指定了一个回调函数,当设备就绪时,唤醒等待者,通过回调函数将描述符加入到就绪链表,无需像select,poll方式采用轮询方式;最后select默认只支持1024个fd,epoll则没有限制,具体数字可以参考cat /proc/sys/fs/file-max的设置。epoll贯穿在线程池使用的过程中,下面我就epoll的创建,使用和销毁生命周期来描述epoll在线程中是如何使用的。
线程池初始化,epoll通过epoll_create函数创建epoll文件描述符,实现函数是thread_group_init;
端口监听线程监听到请求后,创建socket,并创建THD和connection对象,放在对应的group队列中;
工作线程获取该connection对象时,若还未登录,则进行登录验证
若socket还未注册到epoll,则调用epoll_ctl进行注册,注册方式是EPOLL_CTL_ADD,并将connection对象放入epoll_event结构体中
若是老连接的请求,仍然需要调用epoll_ctl注册,注册方式是EPOLL_CTL_MOD
group内的监听线程调用epoll_wait来监听注册的fd,epoll是一种同步IO方式,所以会进行等待
请求到来时,获取epoll_event结构体中的connection,放入到group中的队列
线程池销毁时,调用thread_group_close将epoll关闭。
备注:
1.注册在epoll的fd,若请求就绪,则将对应的event放入到events数组,并将该fd的事务类型清空,因此对于老的连接请求,依然需要调用epoll_ctl(pollfd, EPOLL_CTL_MOD, fd, &ev)来注册。
线程池函数调用关系
(1)创建epoll
tp_init->thread_group_init->tp_set_threadpool_size->io_poll_create->epoll_create
(2)关闭epoll
tp_end->thread_group_close->thread_group_destroy->close(pollfd)
(3)关联socket描述符
handle_event->start_io->io_poll_associate_fd->io_poll_start_read->epoll_ctl
(4)处理连接请求
handle_event->threadpool_process_request->do_command->dispatch_command->mysql_parse->mysql_execute_command
(5)工作线程空闲时
worker_main->get_event->pthread_cond_timedwait
等待thread_pool_idle_timeout后,退出。
(6)监听epoll
worker_main->get_event->listener->io_poll_wait->epoll_wait
(7)端口监听线程
main->mysqld_main->handle_connections_sockets->poll
one-connection-per-thread函数调用关系
(1) 工作线程等待请求
handle_one_connection->do_handle_one_connection->do_command->
my_net_read->net_read_packet->net_read_packet_header->net_read_raw_loop->
vio_read->vio_socket_io_wait->vio_io_wait->poll
备注:与线程池的工作线程有监听线程帮助其监听请求不同,one-connection-per-thread方式的工作线程在空闲时,会调用poll阻塞等待网络包过来;
而线程池的工作线程只需要专心处理请求即可,所以使用也更充分。
(2)端口监听线程
与线程池的(7)相同
参考文档
http://www.cnblogs.com/Anker/p/3265058.html
http://blog.csdn.net/zhanglu5227/article/details/7960677
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)