数据库中死锁是什么产生的?

数据库中死锁是什么产生的?,第1张

数据库 *** 作的死锁是不可避免的,本文并不打算讨论死锁如何产生,重点在于解决死锁,通过SQL Server 2005, 现在似乎有了一种新的解决办法。

将下面的SQL语句放在两个不同的连接里面,并且在5秒内同时执行,将会发生死锁。

use Northwind

begin tran

insert into Orders(CustomerId) values(@#ALFKI@#)

waitfor delay @#00:00:05@#

select * from Orders where CustomerId = @#ALFKI@#

commit

print @#end tran@#

SQL Server对付死锁的办法是牺牲掉其中的一个,抛出异常,并且回滚事务。在SQL Server 2000,语句一旦发生异常,T-SQL将不会继续运行,上面被牺牲的连接中, print @#end tran@#语句将不会被运行,所以我们很难在SQL Server 2000的T-SQL中对死锁进行进一步的处理。

现在不同了,SQL Server 2005可以在T-SQL中对异常进行捕获,这样就给我们提供了一条处理死锁的途径:

下面利用的try ... catch来解决死锁。

SET XACT_ABORT ON

declare @r int

set @r = 1

while @r <= 3

begin

begin tran

begin try 

insert into Orders(CustomerId) values(@#ALFKI@#)

waitfor delay @#00:00:05@#

select * from Orders where CustomerId = @#ALFKI@#

commit

break

end try

begin catch

rollback

waitfor delay @#00:00:03@#

set @r = @r + 1

continue

end catch

end

解决方法当然就是重试,但捕获错误是前提。rollback后面的waitfor不可少,发生冲突后需要等待一段时间,@retry数目可以调整以应付不同的要求。

但是现在又面临一个新的问题: 错误被掩盖了,一但问题发生并且超过3次,异常却不会被抛出。SQL Server 2005 有一个RaiseError语句,可以抛出异常,但却不能直接抛出原来的异常,所以需要重新定义发生的错误,现在,解决方案变成了这样:

declare @r int

set @r = 1

while @r <= 3

begin

begin tran

begin try 

insert into Orders(CustomerId) values(@#ALFKI@#)

waitfor delay @#00:00:05@#

select * from Orders where CustomerId = @#ALFKI@#

commit

break

end try

begin catch

rollback

waitfor delay @#00:00:03@#

set @r = @r + 1

continue

end catch

end

if ERROR_NUMBER() <>0

begin

declare @ErrorMessage nvarchar(4000)

declare @ErrorSeverity int

declare @ErrorState int

select

@ErrorMessage = ERROR_MESSAGE(),

@ErrorSeverity = ERROR_SEVERITY(),

@ErrorState = ERROR_STATE()

raiserror (@ErrorMessage,

  @ErrorSeverity,

  @ErrorState

  )

end

这是我见的一个文档,虽然我看不懂,你看看有没有帮助

MySQL死锁问题的相关知识是本文我们主要要介绍的内容,接下来我们就来一一介绍这部分内容,希望能够对您有所帮助。

1、MySQL常用存储引擎的锁机制

MyISAM和MEMORY采用表级锁(table-level locking)

BDB采用页面锁(page-level locking)或表级锁,默认为页面锁

InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁

2、各种锁特点

表级锁:开销小,加锁快不会出现死锁锁定粒度大,发生锁冲突的概率最高,并发度最低

行级锁:开销大,加锁慢会出现死锁锁定粒度最小,发生锁冲突的概率最低,并发度也最高

页面锁:开销和加锁时间界于表锁和行锁之间会出现死锁锁定粒度界于表锁和行锁之间,并发度一般

3、各种锁的适用场景

表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用

行级锁则更适合于有大量按索引条件并发更新数据,同时又有并发查询的应用,如一些在线事务处理系统

4、死锁

是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。

表级锁不会产生死锁。所以解决死锁主要还是针对于最常用的InnoDB。

5、死锁举例分析

在MySQL中,行级锁并不是直接锁记录,而是锁索引。索引分为主键索引和非主键索引两种,如果一条sql语句 *** 作了主键索引,MySQL就会锁定这条主键索引如果一条语句 *** 作了非主键索引,MySQL会先锁定该非主键索引,再锁定相关的主键索引。

在UPDATE、DELETE *** 作时,MySQL不仅锁定WHERE条件扫描过的所有索引记录,而且会锁定相邻的键值,即所谓的next-key locking。

例如,一个表db。tab_test,结构如下:

id:主键

state:状态

time:时间

索引:idx_1(state,time)

出现死锁日志如下:

?***(1) TRANSACTION:

?TRANSACTION 0 677833455, ACTIVE 0 sec, process no 11393, OSthread id 278546 starting index read

?mysql tables in use 1, locked 1

?LOCK WAIT 3 lock struct(s), heap size 320

?MySQL thread id 83, query id 162348740 dcnet03 dcnet Searching rows for update

?update tab_test set state=1064,time=now() where state=1061 and time <date_sub(now(), INTERVAL 30 minute) (任务1的sql语句)

?***(1) WAITING FOR THIS LOCK TO BE GRANTED: (任务1等待的索引记录)

?RECORD LOCKS space id 0 page no 849384 n bits 208 index `PRIMARY` of table `db/tab_test` trx id 0 677833455 _mode X locks rec but not gap waiting

?Record lock, heap no 92 PHYSICAL RECORD: n_fields 11compact formatinfo bits 0

?0: len 8hex 800000000097629casc b 1: len 6hex 00002866eaeeasc (f 2: len 7hex 00000d40040110asc @ 3: len 8hex 80000000000050b2asc P 4: len 8hex 800000000000502aasc P*5: len 8hex 8000000000005426asc T&6: len 8hex 800012412c66d29casc A,f 7: len 23hex 75706c6f6164666972652e636f6d2f6 8616e642e706870asc xxx.com/8: len 8hex 800000000000042basc +9: len 4hex 474bfa2basc GK +10: len 8hex 8000000000004e24asc N$

?*** (2) TRANSACTION:

?TRANSACTION 0 677833454, ACTIVE 0 sec, process no 11397, OS thread id 344086 updating or deleting, thread declared inside InnoDB 499

?mysql tables in use 1, locked 1

?3 lock struct(s), heap size 320, undo log entries 1

?MySQL thread id 84, query id 162348739 dcnet03 dcnet Updating update tab_test set state=1067,time=now () where id in (9921180) (任务2的sql语句)

?*** (2) HOLDS THE LOCK(S): (任务2已获得的锁)

?RECORD LOCKS space id 0 page no 849384 n bits 208 index `PRIMARY` of table `db/tab_test` trx id 0 677833454 lock_mode X locks rec but not gap

?Record lock, heap no 92 PHYSICAL RECORD: n_fields 11compact formatinfo bits 0

?0: len 8hex 800000000097629casc b 1: len 6hex 00002866eaeeasc (f 2: len 7hex 00000d40040110asc @ 3: len 8hex 80000000000050b2asc P 4: len 8hex 800000000000502aasc P*5: len 8hex 8000000000005426asc T&6: len 8hex 800012412c66d29casc A,f 7: len 23hex 75706c6f6164666972652e636f6d2f6 8616e642e706870asc uploadfire.com/hand.php8: len 8hex 800000000000042basc +9: len 4hex 474bfa2basc GK +10: len 8hex 8000000000004e24asc N$

?*** (2) WAITING FOR THIS LOCK TO BE GRANTED: (任务2等待的锁)

?RECORD LOCKS space id 0 page no 843102 n bits 600 index `idx_1` of table `db/tab_test` trx id 0 677833454 lock_mode X locks rec but not gap waiting

?Record lock, heap no 395 PHYSICAL RECORD: n_fields 3compact formatinfo bits 0

?0: len 8hex 8000000000000425asc %1: len 8hex 800012412c66d29casc A,f 2: len 8hex 800000000097629casc b

?*** WE ROLL BACK TRANSACTION (1)

?(回滚了任务1,以解除死锁)

原因分析:

当“update tab_test set state=1064,time=now() where state=1061 and time <date_sub(now(), INTERVAL 30 minute)”执行时,MySQL会使用idx_1索引,因此首先锁定相关的索引记录,因为idx_1是非主键索引,为执行该语句,MySQL还会锁定主键索引。

假设“update tab_test set state=1067,time=now () where id in (9921180)”几乎同时执行时,本语句首先锁定主键索引,由于需要更新state的值,所以还需要锁定idx_1的某些索引记录。

这样第一条语句锁定了idx_1的记录,等待主键索引,而第二条语句则锁定了主键索引记录,而等待idx_1的记录,这样死锁就产生了。

6、解决办法

拆分第一条sql,先查出符合条件的主键值,再按照主键更新记录:

?select id from tab_test where state=1061 and time <date_sub(now(), INTERVAL 30 minute)

?update tab_test state=1064,time=now() where id in(......)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/8314634.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-15
下一篇 2023-04-15

发表评论

登录后才能评论

评论列表(0条)

保存