其中1,2相对较容易实现,本文重点讲讲水平拆表和水平拆库,以及基于mybatis插件方式实现水平拆分方案落地。
在 《聊一聊扩展字段设计》 一文中有讲解到基于KV水平存储扩展字段方案,这就是非常典型的可以水平分表的场景。主表和kv表是一对N关系,随着主表数据量增长,KV表最大N倍线性增长。
这里我们以分KV表水平拆分为场景
对于kv扩展字段查询,只会根据id + key 或者 id 为条件的方式查询,所以这里我们可以按照id 分片即可
分512张表(实际场景具体分多少表还得根据字段增加的频次而定)
分表后表名为kv_000 ~ kv_511
id % 512 = 1 .... 分到 kv_001,
id % 512 = 2 .... 分到 kv_002
依次类推!
水平分表相对比较容易,后面会讲到基于mybatis插件实现方案
场景:以下我们基于博客文章表分库场景来分析
目标:
表结构如下(节选部分字段):
按照user_id sharding
假如分1024个库,按照user_id % 1024 hash
user_id % 1024 = 1 分到db_001库
user_id % 1024 = 2 分到db_002库
依次类推
目前是2个节点,假如后期达到瓶颈,我们可以增加至4个节点
最多可以增加只1024个节点,性能线性增长
对于水平分表/分库后,非shardingKey查询首先得考虑到
基于mybatis分库分表,一般常用的一种是基于spring AOP方式, 另外一种基于mybatis插件。其实两种方式思路差不多。
为了比较直观解决这个问题,我分别在Executor 和StatementHandler阶段2个拦截器
实现动态数据源获取接口
测试结果如下
由此可知,我们需要在Executor阶段 切换数据源
对于分库:
原始sql:
目标sql:
其中定义了三个注解
@useMaster 是否强制读主
@shardingBy 分片标识
@DB 定义逻辑表名 库名以及分片策略
1)编写entity
Insert
select
以上顺利实现mysql分库,同样的道理实现同时分库分表也很容易实现。
此插件具体实现方案已开源: https://github.com/bytearch/mybatis-sharding
目录如下:
mysql分库分表,首先得找到瓶颈在哪里(IO or CPU),是分库还是分表,分多少?不能为了分库分表而拆分。
原则上是尽量先垂直拆分 后 水平拆分。
以上基于mybatis插件分库分表是一种实现思路,还有很多不完善的地方,
例如:
MySQL的cluster方案有很多官方和第三方的选择,选择多就是一种烦恼,因此,我们考虑MySQL数据库满足下三点需求,考察市面上可行的解决方案:高可用性:主服务器故障后可自动切换到后备服务器可伸缩性:可方便通过脚本增加DB服务器负载均衡:支持手动把某公司的数据请求切换到另外的服务器,可配置哪些公司的数据服务访问哪个服务器
需要选用一种方案满足以上需求。在MySQL官方网站上参考了几种解决方案的优缺点
当前做分布式的厂商有几家,我知道比较出名的有“华为云分布式数据库DDM”和“阿里云分布式数据库”,感兴趣可以自行搜素了解下。
分布式数据库的几点概念可以了解一下。
数据分库:
以表为单位,把原有数据库切分成多个数据库。切分后不同的表存储在不同的数据库上。
以表中的数据行记录为单位,把原有逻辑数据库切分成多个物理数据库分片,表数据记录分布存储在各个分片上。
路由分发:
在分布式数据库中,路由的作用即将SQL语句进行解析,并转发到正确的分片上,保证SQL执行后得到正确的结果,并且节约QPS资源。
读写分离:
数据库中对计算和缓存资源消耗较多的往往是密集或复杂的SQL查询。当系统资源被查询语句消耗,反过来会影响数据写入 *** 作,进而导致数据库整体性能下降,响应缓慢。因此,当数据库CPU和内存资源占用居高不下,且读写比例较高时,可以为数据库添加只读数据库。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)