as 可理解为:用作、当成,作为;一般是重命名列名或者表名。(主要为了查询方便)
(1)如:表text, 列 column_1,column_2
你可以写成
select column_1 as 列1,column_2 as 列2 from text as 表上面的语句可以解释为:选择 column_1 作为 列1,column_2 作为 列2 从 text 当成 表
(2)
select * from blog as B解析:查找所有blog 表里面的数据,并把blog表格命名为 B;
当你命名一个表之后,你可以在下面用 B 代替 blog;
select *from B.
方法
(1) 根据需求找到关联表
(2)找到关联条件
重点的表tables
* 需求1:统计world库下有几个表
需求2:统计所有库下表的个数
需求3:统计每个库的总数据大小
--单表占空间:AVG_ROW_LENGTH*TABLE_ROWS+INDEX_LENGTH
什么使索引:索引其实就是一种算法
BTree
HASH
Rtree
Fulltext
辅助索引
聚集索引
聚集索引提取整行数据作为叶子节点
1、辅助索引和聚集索引最大的区别就在于叶子节点,枝节点和根节点原理相同
2、辅助索引会记录主键值,一般情况(除等值查询),最终都会通过聚集索引(主键)来找到需要的数据
第二种
一般经常用来查询的列作为索引
索引可以有多个,但是索引名不可重名
第一种:单列索引
第二种:前缀索引
前缀索引只能应用到字符串列,数字列不能用前缀索引
联合索引说明:如果在一个表内对A、B、C三个列创建联合索引那么创建索引将按照如下情况创建索引表:
A
AB
ABC
======================================================
(1)查询列无索引
(2)语句不符合走走索引条件
(3)需要查看全表
即把有索引的列全便利一遍
>、 <、 >=、 <=、 like、 between and 在范围扫描中,这些会受到B+tree索引叶子节点上额外的优化,因为这些是连续取值的
or、in 这两个不是连续的取值,所以不能受到B+tree索引的额外优化,使用时相当于Btree索引
!=、 not in 只有在主键列才走索引也是range级别
(1)>、 <、 >=、 <=、 like、 between and
(2)or、in
(3)!=、 not in
多表连接查询,非驱动表连接条件是主键或唯一键
一般多表查询的时,最左侧的表为驱动表,右侧的为非驱动表,下边的例子中country标为非驱动表
7.1.1 数字类型
7.1.2 字符串类型:
字符集
中文
gbk 2字节
utf8 3字节
utf8mb4 4字节
utf8mb4 为例:
举例(1)联合索引等值查询
举例(2) 联合索引中有不等值查询
如果Extra列出现Using temporary、Using filesort,两项内容,那么考虑以下语句的问题。
group by
order by
distinct
join on
union
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)