hadoop作用

hadoop作用,第1张

1.hadoop有三个主要的核心组件:HDFS(分布式文件存储)、MAPREDUCE(分布式的计算)、YARN(资源调度),现在云计算包括大数据和虚拟化进行支撑。在HADOOP(hdfs、MAPREDUCE、yarn)大数据处理技术框架,擅长离线数据分析.Zookeeper 分布式协调服务基础组件,Hbase 分布式海量数据库,离线分析和在线业务处理。Hive sql 数据仓库工具,使用方便,功能丰富,基于MR延迟大,可以方便对数据的分析,并且数据的处理可以自定义方法进行 *** 作,简单方便。Sqoop数据导入导出工具,将数据从数据导入Hive,将Hive导入数据库等 *** 作。Flume数据采集框架,可以从多种源读取数据。Azkaban对 *** 作进行管理,比如定时脚本执行,有图形化界面,上传job简单,只需要将脚本打成bao,可直接上传。2.hadoop的可以做离散日志分析,一般流程是:将web中的数据取过来【通过flume】,然后通过预处理【mapreduce,一般只是使用map就可以了】,就是将数据中没有用处的数据去除掉,将数据转换【比如说时间的格式,Agent的组合】,并将数据进行处理之后以固定格式输出,由Hive处理,Hive是作用是将数据转换出一个表,RTL就是写SQL的一个过程,将数据进行分析,然后将数据报表统计,这个时候使用的是pig数据分析【hive一般作为库,pig做分析,我没有使用pig,因为感觉还没有hive的HQL处理方便】,最后将含金量最大的数据放入到mysql中,然后将mysql中的数据变为可视图化的工具。推荐的使用:当我们浏览一各网页的时候,将数据的值值传递给后台保存到log中,后台将数据收集起来,hadoop中的fiume可以将数据拿到放入到HDFS中,原始的数据进行预处理,然后使用HIVE将数据变为表,进行数据的分析,将有价值的数据放入到mysql,作为推荐使用,这个一般是商城,数据的来源也是可以通过多种方式的,比如说隐形图片、js、日志等都可以作为采集数据的来源。3.hadoop中的HDFS有两个重要的角色:NameNode、datanode,Yarn有两个主要的主角:ResourceManager和nodeManager.4.分布式:使用多个节点协同完成一项或者多项业务功能的系统叫做分布式系统,分布式一般使用多个节点组成,包括主节点和从节点,进行分析5.mapreduce:是使用较少的代码,完成对海量数据的处理,比如wordCount,统计单词的个数。实现思想:将单词一个一个的遍历,然后将单词加1处理,但是这是集群,那么就每个节点计算自己节点的数据,然后最后交给一个统计的程序完成就可以了,最后将单词和结果输出。

Flume是开源日志系统。是一个分布式、可靠性和高可用的海量日志聚合系统,支持在系统中定制各类数据发送方,用于收集数据;同时,FLume提供对数据进行简单处理,并写到各种数据接收方(可定制)的能力。

Flume是流式日志采集工具,FLume提供对数据进行简单处理并且写到各种数据接收方(可定制)的能力,Flume提供从本地文件(spooling directory source)、实时日志(taildir、exec)、REST消息、Thift、Avro、Syslog、Kafka等数据源上收集数据的能力。

Flume是收集、聚合事件流数据的分布式框架。

Flume分布式系统中最核心的角色是 agent ,Flume采集系统就是由一个个agent所连接起来形成

每一个agent相当于一个数据传递员 ,内部有三个组件:

Source 到Channel 到Sink之间传递数据的形式是Event事件; Event事件是一个数据流单元 。

Flume基础架构:Flume可以单节点直接采集数据,主要应用于集群内数据。

Flume多agent架构:Flume可以将多个节点连接起来,将最初的数据源经过收集,存储到最终的存储系统中。主要应用于集群外的数据导入到集群内。

各组件具体介绍如下:

Source负责接收events或通过特殊机制产生events,并将events批量放到一个或多个Channels。有驱动和轮询2中类型的Source。

Source必须至少和一个channel关联。

Source的类型如下:

Channel位于Source和Sink之间,Channel的作用类似队列,用于临时缓存进来的events,当Sink成功地将events发送到下一跳的channel或最终目的,events从Channel移除。

不同的Channel提供的持久化水平也是不一样的:

Channels支持事物,提供较弱的顺序保证,可以连接任何数量的Source和Sink。

Sink负责将events传输到下一跳或最终目的,成功完成后将events从channel移除。

必须作用于一个确切的channel。

Sink类型:

Flume支持将集群外的日志文件采集并归档到HDFS、HBase、Kafka上,供上层应用对数据分析、清洗数据使用。

Flume支持将多个Flume级联起来,同时级联节点内部支持数据复制。

这个场景主要应用于:收集FusionInsight集群外上的节点上的日志,并通过多个Flume节点,最终汇聚到集群当中。

Flume级联节点之间的数据传输支持压缩和加密,提升数据传输效率和安全性。

在同一个Flume内部进行传输时,不需要加密,为进程内部的数据交换。

Source接收的数据量,Channel缓存的数据量,Sink写入的数据量,这些都可以通过Manager图形化界面呈现出来。

Flume在传输数据过程中,采用事物管理方式,保证数据传输过程中数据不会丢失,增强了数据传输的可靠性,同时缓存在channel中的数据如果采用了file channel,进程或者节点重启数据不会丢失。

Flume在传输数据过程中,如果下一跳的Flume节点故障或者数据接收异常时,可以自动切换到另外一路上继续传输。

Flume在传输数据过程中,可以见到的对数据简单过滤、清洗,可以去掉不关心的数据,同时如果需要对复杂的数据过滤,需要用户根据自己的数据特殊性,开发过滤插件,Flume支持第三方过滤插件调用

安装地址:

安装部署:

本地使用的是CDH 6.3.1 版本,已安装Flume,此处略过安装步骤

使用 Flume 监听一个端口,收集该端口数据,并打印到控制台。

安装netcat并检查端口是否被占用

在Flume的安装目录下创建conf/lib目录,并创建flume的配置文件

添加内容如下:

第一种写法:

第二种写法:

参数说明:

--conf/-c:表示配置文件存储在 conf/目录

--name/-n:表示给 agent 起名为 a1

--conf-file/-f:flume 本次启动读取的配置文件是在 job 文件夹下的 flume-telnet.conf

文件。

-Dflume.root.logger=INFO,console :-D 表示 flume 运行时动态修改 flume.root.logger

参数属性值,并将控制台日志打印级别设置为 INFO 级别。日志级别包括:log、info、warn、

error。

通过nc输入的数据,flume监听页面都接受到了,并且输出到了控制台

实时监控 Hive 日志,并上传到 HDFS 中

注:要想读取 Linux 系统中的文件,就得按照 Linux 命令的规则执行命令。由于 Hive 日志在 Linux 系统中所以读取文件的类型选择:exec 即 execute 执行的意思。表示执行Linux 命令来读取文件。

添加如下内容:

注意: 对于所有与时间相关的转义序列,Event Header 中必须存在以 “timestamp”的key(除非 hdfs.useLocalTimeStamp 设置为 true,此方法会使用 TimestampInterceptor 自动添加 timestamp)。

a3.sinks.k3.hdfs.useLocalTimeStamp = true

从日志可以看到文件已经上传到HDFS:

在HDFS上查看:

1小时自动生产一个目录

1分钟自动生产一个文件

tmp结尾的文件为正在写入的文件,时间到了后就会自动重命名

使用 Flume 监听整个目录的文件,并上传至 HDFS

添加如下内容:

flume日志:

从日志输出可以看到原目录的 c.txt直接被修改为 c.txt.COMPLETED,然后c.txt上传到一个另外名字的文件,而且从输出可以看到,多个文件的内容会合并上传到一个hdfs上的文件。

hdfs上看输出:

同样是1分钟一个文件,但是有写入才会创建,如果没有写入是不行的。

  Exec source 适用于监控一个实时追加的文件,不能实现断点续传;Spooldir Source 适合用于同步新文件,但不适合对实时追加日志的文件进行监听并同步;而 Taildir Source 适合用于监听多个实时追加的文件,并且能够实现断点续传。

案例需求:

使用 Flume 监听整个目录的实时追加文件,并上传至 HDFS 。

添加如下内容:

flume控制台输出:

HDFS查看输出文件:

Taildir Source 维护了一个 json 格式的 position File,其会定期的往 position File中更新每个文件读取到的最新的位置,因此能够实现断点续传

注:

Linux 中储存文件元数据的区域就叫做 inode,每个 inode 都有一个号码, *** 作系统用 inode 号码来识别不同的文件,Unix/Linux 系统内部不使用文件名,而使用 inode 号码来识别文件。

改名后inode不会发生变化,这点要注意


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/8508659.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存