而MySQL另外一个最流行的存储引擎之一Innodb存储数据的策略是分为两种的,一种是共享表空间存储方式,还有一种是独享表空间存储方式。
当使用共享表空间存储方式的时候,Innodb的所有数据保存在一个单独的表空间里面,而这个表空间可以由很多个文件组成,一个表可以跨多个文件存在,所 以其大小限制不再是文件大小的限制,而是其自身的限制。从Innodb的官方文档中可以看到,其表空间的最大限制为64TB,也就是说,Innodb的单 表限制基本上也在64TB左右了,当然这个大小是包括这个表的所有索引等其他相关数据。
而当使用独享表空间来存放Innodb的表的时候,每个表的数据以一个单独的文件来存放,这个时候的单表限制,又变成文件系统的大小限制了。
limit x, y:表示跳过x个数据读取y个数据limit x offset y:表示跳过y个数据读取x个数据,offset表示偏移量
limit x:表示从头开始读取x个数据,相当于limit 0,x
order by和limit一起使用,避免引起全表扫描和数据排序是非常重要的,因此借助合适的索引提高查询效率。
in的参数个数为1个,联合索引生效,大于1个,索引失效。所以使用了强制索引使联合索引生效。
原因分析:
第一、取决于B树的数据结构,单参数的IN只会得到一颗基于model子树,该子树的code本身是有序的,所以索引生效,查询效率高;多参数的IN会得到多颗基于model的子树,每颗子树的code字段是有序的,但是总体上可能不是有序的,所以索引失效,查询效率低。
第二、使用强制索引后,理论上无法保证order by的顺序,但是如果数据本身的特性,比如时间递增的这类数据,总体上还是有序的,笔者试过多中途径想要迫使强制索引得到错误的结果,结果都对了。强制索引需进一步研究。
此时,通过子查询优化limit,效果如下:
以上数据来自一张超过2000万的MySQL单表,仅供参考,能够说明子查询明显能够提升效率,笔者开始尝试把子查询的order by去掉,发现查询效率又提升2倍,但是对比发现数据不正确,explain后发现查询优化器给出的子查询索引并不是id(此表建有多个索引,id是主键,区分度最高),这一点比较困惑。
ps:在sql语句中,limt关键字是最后才用到的。以下条件的出现顺序一般是:where->group by->having-order by->limit
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)