大数据三大核心技术:拿数据、算数据、卖数据!

大数据三大核心技术:拿数据、算数据、卖数据!,第1张

大数据的由来

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

1

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大数据的应用领域

大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。

制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。

金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。

汽车 行业,利用大数据和物联网技术的无人驾驶 汽车 ,在不远的未来将走入我们的日常生活。

互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。

电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。

能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。

物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。

城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。

体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。

安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。

个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。

大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。

大数据方面核心技术有哪些?

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。

数据采集与预处理

对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。

Flume NG

Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。

NDC

Logstash

Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。

Sqoop

Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapReduce 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。

流式计算

流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。

Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。

Zookeeper

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。

数据存储

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。

Phoenix

Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。

Yarn

Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。

Mesos

Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。

Redis

Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。

Atlas

Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。

Kudu

Kudu是围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描 *** 作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Kudu的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。

在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。

数据清洗

MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。

随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。

Oozie

Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。

Azkaban

Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。

流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求

数据查询分析

Hive

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。可以将Hive理解为一个客户端工具,将SQL *** 作转换为相应的MapReduce jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapReduce程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。

Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。

Impala

Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来 *** 作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapReduce任务,相比Hive没了MapReduce启动时间。

Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。

Spark

Spark拥有Hadoop MapReduce所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像 *** 作本地集合对象一样轻松地 *** 作分布式数据集。

Nutch

Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。

Solr

Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引也可以通过Http Get *** 作提出查找请求,并得到XML格式的返回结果。

Elasticsearch

Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。

数据可视化

对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数等。

在上面的每一个阶段,保障数据的安全是不可忽视的问题。

基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。

控制权限的ranger是一个Hadoop集群权限框架,提供 *** 作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过 *** 作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。

简单说有三大核心技术:拿数据,算数据,卖数据。

上图是HBase的存储架构图。

由上图可以知道,客户端是通过Zookeeper找到HMaster,然后再与具体的Hregionserver进行沟通读写数据的。

具体到物理实现,细节包括以下这些:

首先要清楚HBase在hdfs中的存储路径,以及各个目录的作用。在hbase-site.xml 文件中,配置项 <name>hbase.rootdir</name>默认 “/hbase”,就是hbase在hdfs中的存储根路径。以下是hbase0.96版本的个路径作用。1.0以后的版本请参考这里: https://blog.bcmeng.com/post/hbase-hdfs.html

1、 /hbase/.archive

HBase 在做 Split或者 compact *** 作完成之后,会将 HFile 移到.archive 目录中,然后将之前的 hfile 删除掉,该目录由 HMaster 上的一个定时任务定期去清理。

2、 /hbase/.corrupt

存储HBase损坏的日志文件,一般都是为空的。

3、 /hbase/.hbck

HBase 运维过程中偶尔会遇到元数据不一致的情况,这时候会用到提供的 hbck 工具去修复,修复过程中会使用该目录作为临时过度缓冲。

4、 /hbase/logs

HBase 是支持 WAL(Write Ahead Log) 的,HBase 会在第一次启动之初会给每一台 RegionServer 在.log 下创建一个目录,若客户端如果开启WAL 模式,会先将数据写入一份到.log 下,当 RegionServer crash 或者目录达到一定大小,会开启 replay 模式,类似 MySQL 的 binlog。

5、 /hbase/oldlogs

当.logs 文件夹中的 HLog 没用之后会 move 到.oldlogs 中,HMaster 会定期去清理。

6、 /hbase/.snapshot

hbase若开启了 snapshot 功能之后,对某一个用户表建立一个 snapshot 之后,snapshot 都存储在该目录下,如对表test 做了一个 名为sp_test 的snapshot,就会在/hbase/.snapshot/目录下创建一个sp_test 文件夹,snapshot 之后的所有写入都是记录在这个 snapshot 之上。

7、 /hbase/.tmp

当对表做创建或者删除 *** 作的时候,会将表move 到该 tmp 目录下,然后再去做处理 *** 作。

8、 /hbase/hbase.id

它是一个文件,存储集群唯一的 cluster id 号,是一个 uuid。

9、 /hbase/hbase.version

同样也是一个文件,存储集群的版本号,貌似是加密的,看不到,只能通过web-ui 才能正确显示出来

10、 -ROOT-

该表是一张的HBase表,只是它存储的是.META.表的信息。通过HFile文件的解析脚本 hbase org.apache.hadoop.hbase.io.hfile.HFile -e -p -f 可以查看其存储的内容,如下所示:

以上可以看出,-ROOT-表记录的.META.表的所在机器是dchbase2,与web界面看到的一致:

11、 .META.

通过以上表能找到.META.表的信息,该表也是一张hbase表,通过以上命令,解析其中一个region:

以上可以看出,adt_app_channel表的数据记录在dchbase3这台reginserver上,也与界面一致,如果有多个region,则会在表名后面加上rowkey的范围:

通过以上描述,只要找到-ROOT-表的信息,就能根据rowkey找到对应的数据,那-ROOT-在哪里找呢?从本文一开始的图中可以知道,就是在zookeeper中找的。进入zookeeper命令行界面:

可以看出-ROOT-表存储在 dchbase3 机器中,对应界面如下:

以上就是HBase客户端根据指定的rowkey从zookeeper开始找到对应的数据的过程。

那在Region下HBase是如何存储数据的呢?

以下就具体 *** 作一张表,查询对应的HFile文件,看HBase的数据存储过程。

在HBase创建一张表 test7,并插入一些数据,如下命令:

查看wal日志,通过 hbase org.apache.hadoop.hbase.regionserver.wal.HLog --dump -p 命令可以解析HLog文件,内容如下:

查看HFile文件,内容如下:

由此可见,HFile文件就是存储HBase的KV对,其中Key的各个字段包含了的信息如下:

由于hbase把cf和column都存储在HFile中,所以在设计的时候,这两个字段应该尽量短,以减少存储空间。

但删除一条记录的时候,HBase会怎么 *** 作呢?执行以下命令:

删除了rowkey为200的记录,查看hdfs,原来的HFile并没有改变,而是生成了一个新的HFile,内容如下:

所以在HBase中,删除一条记录并不是修改HFile里面的内容,而是写新的文件,待HBase做合并的时候,把这些文件合并成一个HFile,用时间比较新的文件覆盖旧的文件。HBase这样做的根本原因是,HDFS不支持修改文件。

不同列族分别存在不同的文件夹里。

与MySQL比较

首先Hbase是依赖于HDFS和zookeeper的。

Zookeeper分担了Hmaster的一部分功能,客户端进行DML语句的时候,都是先跟ZK交互。

RegionServer管理了很多的Region(表),RegionServer里面的WAL(HLog)是预写入日志,功能是防止内存中的数据没有来的及落盘时丢失。在Region里面管理的Store管理的是列族,Store里面有Mem Store(内存),Flush之后,删除内存中的数据,同时写入文件StoreFile Hfile,Hfile 其实是在DataNode里面的。

Hbase的读比写慢。

Hbase命名空间下有一张元数据表meta表和namespace表。meta表里面保存了要 *** 作的表所在的位置等元数据。

(1)首先客户端向zk请求元数据表所在的RegionServer,zk返回给客户端meta表所在的regionServer。

(2)然后客户端再去对应的RegionServer查找meta表,找到真正要 *** 作的表所在的regionServer,同时把meta表的信息缓存下来,加快后续的查询。

(3)然后客户端再向目标表所在的RegionServer发送put请求。先把数据写到Hlog里面,再写到内存MemStore,数据会在内存排序,然后向客户端发送ack,到这里对于客户端来说写数据已经结束了。再等到MemStore的刷写时机后,将数据刷写到Hfile.

注:meta表所在的位置信息保存在zk的meta-region-server节点上,客户端首先就是在这个节点上差询meta表所在的RegionServer。meta表里面的信息就是表与其对应的RegionServer的信息

这个stu表可能不止一条,因为stu表可能数据量大了之后根据RowKey进行了切分,并且可能会在不同的机器上。

不同的列族是在不同的文件夹。

MemStore刷写时机:

全局的MemStore的容量,默认是堆内存的40%。这个容量值会触发flush *** 作,所有的MemStore都要刷写,flush *** 作会阻塞读写 *** 作。

会刷写并阻塞到到MemStore大小降到它的最大容量的95%

WAL日志的刷写时机:

可以设置日志的大小和数量,当达到一定数量,刷写到HDFS

(1)从zk找meta表所在的RegionServer

(2)从上述RegionServer里的meta表里找目标表所在的RegionServer,同时把meta表缓存,加速后面的查询。

(3)向目标表所在的RegionServer发送get请求。可以从block Cache,MemStore还有StoreFile里面查,具体从哪查根据时间戳,查时间戳大的,具体就都查然后merge取最新。

RegionServer里面有block Cache可以缓存磁盘的数据,加速查询。如果block Cache里面有,就将缓存和MemStore的数据merge然后取最新时间戳,没有就是把磁盘读的和MemStore里面的合并。所以hbase大多数读要走磁盘,所以读很慢。

每次刷写会生成新的Hfile,Hfile很小并且数量多的时候会影响查询的速度。所以要进行合并。合并分为minor Compaction和major Compaction

minor Compaction将临近的若干较小的Hfile合并成一个较大的Hfile,不会清理过期和删除的数据,major Compaction会将一个Store里面的所有Hfile合并成一个大的Hfile,并且会清理掉过期和删除的数据。

数据的读写可以不依赖Hmaster,只需要指定zookeeper,但是Hmaster负责region调度的元数据

但是DDL语言是要有Hmaster的

Flush和major Compact

(1)flush在同一个内存中清除过期或删除(删除标记也是一行数据)的数据,但是如果数据不同的版本分布在不同的memStroe,就不能清除。删除的标记在flush之后不会被删,但在后面的major compaction会把删除标记删除掉。

(2)major compaction 会清除过期或删除的数据。

默认情况下,每个Table起初只有一个Region,随着数据的不断写入,Region会自动拆分,两个子Region开始都会在一个Regionserver里面,但是出于负载均衡的考虑,Hmaster有可能会将某个Region传给其他的RegionServer。

Split的时机:

(1)当一个Region中的某个Store下的StoreFile的总大小查过某个值,由参数hbase.hregion.max.filesize设定(默认10g),该Region就会按照RowKey进行拆分。

(2)在新版本中这个值是Min(R^2*"hbase.hregion.memStore.flush.size(128M)","hbase.hregion.max.filesize"),R是当前RegionServer中属于该Table的Region个数。分region是按照RowKey切分的。这会导致数据倾斜,就是因为切分的阈值在变化,导致切分之后的region数据量不均匀,导致热点的问题。所以在建表的时候要做预分区,就是用RowKey规划好多少个region,不让hbase自己的切分逻辑切分。

官方建议只用一个列族,防止不同的列族之间数据不均匀,单一列族数据量增多,导致全局的flush,数据量小的列族也要flush,这样会形成很多小的storeFile。

delete *** 作:

(1)设置RowKey:打的删除标记是deleteFamily,删除多个版本

(2)设置RowKey+Family:打的标记是deleteFamily,删除多个版本

(3)设置RowKey+family+column:有addColumn()和addColumns().addColumn是删除最新的版本或者删除指定时间戳的版本,删除标记是delete标记。addColumns是删除所有的版本或者删除指定时间戳或之前的版本,删除标记是deleteColumn

Delete的 *** 作其实也是put *** 作,put的是删除的标记。

在Hbase中HMaster负责监控HRegionServer的生命周期,均衡RegionServer的负载,如果HMaster挂掉了,那个整个Hbase集群将处于不健康的状态,并且此时的工作状态不会维持太久。所以Hbase支持对HMaster的高可用配置。

在Hbase的conf目录下新建backup-masters文件,vim加入备份Master,比如slave01,slave02.在把文件分发到各个slave里,然后再启动hbase 就能实现HMaster的高可用了。

每一个region维护着StartRow和EndRow,如果加入的数据符合某个region维护的RowKey范围,则该数据交给这个region维护。那么依照这个原则,我们可以将数据所要投放的分区提前大致的规划好,以提高Hbase性能。

(1)手动设定预分区

手动设置RowKey分了5个region

(2)生成16进制序列预分区

(3)按照文件中设置的规则预分区

创建split.txt

然后执行

这里如果文件里面给的分区键不是按照顺序的,hbase会先帮我们把键排序,然后按照键来分区。

(4)使用JavaAPI预分区

admin的创建表的方法有多个重载,可以只传表的描述,也可以加入分区的信息。admin.createTable

规划分区要考虑未来数据量和机器的规模。虽然提前做了分区,但是最后如果分区大于了10G,还是会触发split。假设一台机器有100G磁盘,那么预分区尽量大于10个,这样就能避免预分区之后又触发了大于10G的split。

(1)希望数据能够尽量均匀的分配在多个分区里面(散列性)。

(2)唯一性

(3)长度原则(生产环境70到100位)

常见的设计方案:

(1)生产随机数、hash、散列值

(2)字符串反转

(3)字符串拼接

电信项目:

一次通话的记录:13112341233->18998768771 2018-12-12 12:12:21 568

假设分300个区

分区键怎么设计:

(299个键)

000|

001|

...

298|

RowKey的前面一般会拼上000_,001_,...,298_

这样做的好处是,根据前三位就能知道哪个分区。

(1)我们希望手机号尽量分布在不同的分区,但是相同的手机号数据集中在同一个分区,这样方便查询某个用户的通话信息。000_13112341233

(2)因为每个人通话的需求不同,也希望把同一个人的通话记录也分布在不同的分区里面。000_13112341233_2019-12-12

哈希取余:[(13112341234^201912).hash]%299

假设要查询某用户2019年2月的通话记录,可以用13112341234 201902做startRowkey,13112341234 201903做endRowKey

微博。

1、需求

(1)微博内容的浏览

(2)用户社交:关注用户,取关用户

(3)拉取关注人的微博用户

2、设计表

(1)微博内容表Content

行键:用户id+时间戳

(2)用户关系表

因为正常情况一个用户的粉丝和关注都不多,可以用一行存储关注和粉丝的情况。

行键:用户id

(3)初始化页面的表(显示关注的人的最近三条微博)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/8652950.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存