1.修改datarecord的入库机制
既然datarecord里面有大量的数据,但是你需要的是统计出来每个Id的Value最大值,根据这一点
你在向datarecord存入数据时就应该先比较一下,只把比比某个ID的最大的value更大的数存到数据库里,
这种 *** 作其实非常简单,这样的话在datarecord里面存的数据都是截止当前每个ID的最大的value,使用的时候直接使用了,但是你要把每个ID最大的value
写入,然后要把较小的那个给删掉,这样的话,在写入数据时都要查询会影响到入库的性能。
这种机制再向前推进一步,就是在内存里维持一个MAP,名为DatarecordMap,然后再创建一个class,用datarecord表的各个字段值作为属性,
用key=ID,value=Object(Time,value,Quality),
每当有一个新的数据要存入这个MAP时,比较一下,总是把每个ID,最大的value存入MAP,这样比存入如数据库的读写性能高多了
其实你总的ID才1250个,并不算大放内存里处理效率会高很多
这种方法最大的优点是只在内存中保留每个ID最大的value值(其实是整个记录)
因此实际需要的内存并不大
代码:
public class Datarecord {
private int id
private Date time
private int Value
private int Quality=0
public Datarecord(int id,Date time,int Value){
this.id = id
this.time =time
this.Value =Value
}
<此处掠去set get方法>
}
import java.util.Date
import java.util.HashMap
import java.util.Map
import java.util.Random
public class SaveRecord {
/**
* @param args
*/
public static void main(String[] args) {
Map<Integer,Datarecord>DatarecordMap = new HashMap<Integer,Datarecord>()
Datarecord data =null
Random rand = new Random()
int id,value
int number=100000
long t1 = System.currentTimeMillis()
for(int i=1i<=numberi++){
//rand.nextInt(MAX - MIN + 1) + MIN
//模拟产生id,范围1 -- 5
id = rand.nextInt(10) + 1
//模拟产生value,范围1 --- 10000
value = rand.nextInt(100000) + 1
//System.out.println("id:"+id + " value:"+value)
if (DatarecordMap.containsKey(id)){
data = DatarecordMap.get(id)
//判断DatarecordMap 里面当前id对应的value是否被新的value小,如果小直接把这个小的覆盖掉
if (data.getValue()<value){
data = new Datarecord(id,new Date(),value)
DatarecordMap.put(id, data)
}
}else{
data = new Datarecord(id,new Date(),value)
DatarecordMap.put(id, data)
}
}
long t2 = System.currentTimeMillis()
System.out.println("产生"+number+"个数据,用时:"+(t2-t1)+"ms.")
System.out.println("输出每个id 的最大VALUE值========================")
long t3 = System.currentTimeMillis()
for(Integer key:DatarecordMap.keySet()){
System.out.println("id:"+key + " value:"+DatarecordMap.get(key).getValue())
}
long t4 = System.currentTimeMillis()
System.out.println("用时:"+(t4-t3)+"ms.")
}
测试结果:
产生100000个数据,用时:26ms.
输出每个id 的最大VALUE值========================
id:1 value:99995
id:2 value:99996
id:3 value:99994
id:4 value:99996
id:5 value:99992
id:6 value:99996
id:7 value:99993
id:8 value:99993
id:9 value:99990
id:10 value:99977
用时:1ms.
上面的代码模拟产生了100000个数据,用时26ms,数据库无论如何不到这样的性能,在第2个循环中输出每个ID的最大值,用时1ms,你在实际的应用中
可以把这个输出结果先生成一个数据文件,然后用mysql的load命令导入,时间会在不会大于1秒,其实每个ID的最大值汇总在一起并不多,在你的应用中有
1250个,用load命令导入的话,1秒不到就轻松搞定
2.优化数据库
其实写了上面的方法,我已经不想写这个了,这个无论咋优化都打不到第一种方法的性能
如果你觉得第一种方法datarecord表似乎已经没用了,但是又需要要把数据持久化到datarecord表里,可以定时把DatarecordMap表的数据取出,全部写到datarecord表里
但是要先清空这个表的数据,这样的话在某个周期内,datarecord表的数据总是每个ID的最大值
数据千万级别之多,占用的存储空间也比较大,可想而知它不会存储在一块连续的物理空间上,而是链式存储在多个碎片的物理空间上。可能对于长字符串的比较,就用更多的时间查找与比较,这就导致用更多的时间。
可以做表拆分,减少单表字段数量,优化表结构。
在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致。
主要两种拆分 垂直拆分,水平拆分。
垂直分表
也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。
垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Product一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。
数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。
水平分表
针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库 *** 作还是有IO瓶颈。不建议采用。
水平分库分表
将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。
水平分库分表切分规则
1. RANGE
从0到10000一个表,10001到20000一个表;
2. HASH取模
一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。
3. 地理区域
比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。
4. 时间
按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。
分库分表后面临的问题
事务支持
分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。
跨库join
只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。
跨节点的count,order by,group by以及聚合函数问题
这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。
数据迁移,容量规划,扩容等问题
来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由.
一些常见的主键生成策略
UUID
使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。
Twitter的分布式自增ID算法Snowflake
在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。
跨分片的排序分页
一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。
对于count(主键id)来说, innodb引擎会遍历整张表,把每一行的id值都取出来,返回给server层,server层判断id值不为空,就按行累加
对于count(1)来说 ,innodb引擎遍历整张表,但不取值,返回给server层,server对于返回的每一行,放一个数字1进去,判断是不可能为空的,就按行累加
对于count(字段)来说,
如果这个字段定义为not null,一行行的从记录里面读出这个字段,判断不为空,则累加值
如果这个字段定义允许为null,那么执行的时候,判断到有可能为null,还要把值取出来在判断一下,不是null才累加
但是count(*)是例外
并不会把全部字段取出来,而是专门做了优化,不取值,count(*)肯定不是null,按行累加
所以这几个按照效率排序的话,count(字段)<count(主键id)<count(1)≈count(*)
所以,尽量使用count(*)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)