canal+Kafka实现mysql与redis数据同步

canal+Kafka实现mysql与redis数据同步,第1张

前言

上篇文章简单介绍canal概念,本文结合常见的缓存业务去讲解canal使用。在实际开发过程中,通常都会把数据往redis缓存中保存一份,做下简单的查询优化。如果这时候数据库数据发生变更 *** 作,就不得不在业务代码中写一段同步更新redis的代码,但是这种 数据同步的代码和业务代码糅合在一起 看起来不是很优雅,而且还会出现数据不一致问题。那能不能把这部分同步代码从中抽离出来,形成独立模块呢?答案是肯定的,下面通过canal结合Kafka来实现mysql与redis之间的数据同步。

架构设计

通过上述结构设计图可以很清晰的知道用到的组件:MySQL、Canal、Kafka、ZooKeeper、Redis。

Kafka&Zookeeper搭建

首先在 官网 下载Kafka:

下载后解压文件夹,可以看到以下几个文件:

Kafka内部自带了zookeeper,所以暂不需要去下载搭建zookeeper集群,本文就使用Kafka自带zookeeper来实现。

通过上述zookeeper启动命令以及Kafka启动命令把服务启动,可以通过以下简单实现下是否成功:

Canal搭建

canal搭建具体可以参考上文,这里只讲解具体的参数配置:

找到/conf目录下的canal.properties配置文件:

然后配置instance,找到/conf/example/instance.properties配置文件:

经过上述配置后,就可以启动canal了。

测试

环境搭建完成后,就可以编写代码进行测试。

1、引入pom依赖

2、封装Redis工具类

在application.yml文件增加以下配置:

封装一个 *** 作Redis的工具类:

3、创建MQ消费者进行同步

创建一个CanalBean对象进行接收:

最后就可以创建一个消费者CanalConsumer进行消费:

测试Mysql与Redis同步

mysql对应的表结构如下:

启动项目后,新增一条数据:

可以在控制台看到以下输出:

如果更新呢?试一下Update语句:

同样可以在控制台看到以下输出:

经过测试完全么有问题。

总结

既然canal这么强大,难道就没缺点嘛?答案当然是存在的啦,比如:canal只能同步增量数据、不是实时同步而是准实时同步、MQ顺序问题等; 尽管有一些缺点,毕竟没有一样技术或者产品是完美的,最重要是合适。比如公司目前有个视图服务提供宽表搜索查询功能就是通过 同步Mysql数据到Es采用Canal+Kafka的方式来实现的。

Doris官网定义 mysql原始表结构 1.doris中关联mysql外表 结果如下: 2.doris中关联kafka导入数据 查看作业 State为RUNNING,表示已经成功。 停止作业 3.通过flink导入mysql数据到doris 方法1:通过mysql-cdc写入kafka,kafka关联doris表。 方法2:通过阿里云DTS->datahub,然后通过Flink写入kafka,再关联到doris外表 如何处理delete数据?对于方法1,需要手动的删除doris中的数据;对于方法2,可以通过dts_operation_flag字段来标示,dts_operation_flag可以为I/U/D,分别表示添加、更新和删除。那我们就只需要在doris表中添加一个dts_operation_flag字段来标示就可以了,查询数据的时候就不再查询等于D的值。 如何处理脏数据?delete doris中的数据,然后insert正确的值;还有个方法是将关联一个外表(这个是正确的值),然后再将doris中的表和外表中的值diff,将diff的值insert到doris中。

mysql同步数据到hive大部分公司目前都是走的jdbc的方式。 这种方式有两个好处: 也有不好的地方: 这一步最主要的细节是将mysql库的所有binlog数据全部打入一个kafka topic,格式使用json。格式如下: 这一步的主要的细节在于写入到hdfs的结构,以及为什么不直接写入hive。 不写入到hive表的原因在于,binlog的数据结构是不固定的,而hive的结构相对是比较固定的。如果要写入到hive的话,就需要将不同的表的binlog写入到不同的hive表中,这个维护成本太高了。而且spark其实可以直接读取hdfs的json文件,因此直接放hdfs就好了。 写入到hdfs的话,考虑到后续读这个数据是要按照表去读增量数据,所以写入的目录一定是要带日期和表名称的。我这边用的目录结构是这样的: 也就是说要在flink根据数据所属的db、table_name、和日期将数据写入到不同的目录里。 在这一步的处理的过程中遇到了一些比较重要的参数问题。 2.如上所述checkpoint的时间间隔。不仅仅会影响checkpoint的频率,而且会影响hdfs文件的大小,而hdfs文件的大小可能会对hdfs的性能有很大影响。这个值如果太大,就会造成数据延迟太高,如果太小就会造成小文件过多。我这边设置的是5分钟。 细心的看官,这个时候会问了,既然你的目录是分table的,那么每个table每5分钟的binlog数据量是不一样的。对于某些大的mysql表,我们可能每5分钟生成一个文件还能接受。对于一些比较小的表,每五分钟生成一个文件那么文件就会非常小。所以我这边又做了一层的筛选,我把mysql的大的表筛选出来,只同步大的表到hdfs,用以binlog的数据同步。因为本身binlog的方式同步mysql数据为的就是节约mysql的读取压力,而小的表对于不会有太大压力,这些表可以直接通过jdbc的方式去同步。 这个是整个环节里面最复杂的一部分,涉及的细节也比较多。 首先,我们要明确一下总体的思路是什么。总体的思路就是要读取hdfs上的老的历史数据,然后和新的binlog数据合并生成新的快照。 其实这中间还涉及到一些其他的细节,比如mysql表结构变更,或者mysql和hive的数据结构不一致的情况。 另外我们这边还存在多个db的相同的表导入到hive的一张表中的其他问题,我就不赘述了。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/8674014.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存