mysql表分区使用及详细介绍

mysql表分区使用及详细介绍,第1张

一、分区概念

分区是将一个表分成多个区块进行 *** 作和保存,从而降低每次 *** 作的数据,提高性能。而对于应用来说则是透明的,从逻辑上看只有一张表,但在物理上这个表可能是由多个物理分区组成的,每个分区都是独立的对象,可以进行独立处理。

二、分区作用

1.可以逻辑数据分割,分割数据能够有多个不同的物理文件路径。

2.可以存储更多的数据,突破系统单个文件最大限制。

3.提升性能,提高每个分区的读写速度,提高分区范围查询的速度。

4.可以通过删除相关分区来快速删除数据

5.通过跨多个磁盘来分散数据查询,从而提高磁盘I/O的性能。

6.涉及到例如SUM()、COUNT()这样聚合函数的查询,可以很容易的进行并行处理。

7.可以备份和恢复独立的分区,这对大数据量很有好处。

三、分区能支持的引擎

MySQL支持大部分引擎创建分区,入MyISAM、InnoDB等;不支持MERGE和CSV等来创建分区。同一个分区表中的所有分区必须是同一个存储引擎。值得注意的是,在MySQL8版本中,MyISAM表引擎不支持分区。

四、确认MySQL支持分区

从MySQL5.1开始引入分区功能,可以如下方式查看是否支持:

老版本用:SHOW VARIABLES LIKE '%partition%'

新版本用:show plugins

五、分区类型

1. RANGE分区:基于属于一个给定连续区间的列值,把多行分配给分区。

例如,可以将一个表通过年份划分成两个分区,2001 -2010年、2011-2020。

2. LIST分区:类似于RANGE分区,LIST是列值匹配一个离散值集合中的某个值来进行选择。

比如 根据字段 把值为1、3、5的放到一起,2、4、6的另外放到一起 等等...

3. HASH分区:基于用户定义的表达式的返回值来进行选择分区,该表达式使用将要插入到表中的这些行的列值来进行计算,这个函数必须产生非负整数值。

通过HASH运算来进行分区,分布的比较均匀

4. KEY分区:类似于按HASH分区,由MySQL服务器提供其自身的哈希函数。

按照KEY进行分区类似于按照HASH分区

六、分区创建注意事项

1. 如果表中存在primary key 或者 unique key 时,分区的列必须是paimary key或者unique key的一个组成部分,也就是说,分区函数的列只能从pk或者uk这些key中取子集

2. 如果表中不存在任何的paimary key或者unique key,则可以指定任何一个列作为分区列

3. 5.5版本前的RANGE、LIST、HASH分区要求分区键必须是int;MySQL5.5及以上,支持非整形的RANGE和LIST分区,即:range columns 和 list columns (可以用字符串来进行分区)。

七、分区命名

1. 分区的名字基本上遵循其他MySQL 标识符应当遵循的原则,例如用于表和数据库名字的标识符。应当注意的是, 分区的名字是不区分大小写的 。

2. 无论使用何种类型的分区,分区总是在创建时就自动的顺序编号,且从0开始记录。

八、 创建分区

1. RANGE分区:

CREATE TABLE `test01` (

`dayid` int(11) DEFAULT NULL,

`mac` varchar(32) NOT NULL DEFAULT '',

`dtype` varchar(50) NOT NULL DEFAULT ''

) ENGINE=InnoDB DEFAULT CHARSET=utf8

/*!50100 PARTITION BY LIST (dayid)

(PARTITION p20171205 VALUES IN (20171205) ENGINE = InnoDB,

PARTITION p20171204 VALUES IN (20171204) ENGINE = InnoDB,

PARTITION p20171206 VALUES IN (20171206) ENGINE = InnoDB,

PARTITION p20171207 VALUES IN (20171207) ENGINE = InnoDB) */

解读:以上为 uuid小于5时放到p0分区下,uuid大于5且小于10放到p1分区下,uuid大于10且小于15放到p2分区下,uuid大于15 一直到最大值的存在p3分区下

2. LIST分区:

CREATE TABLE tbl_test (

uuid INT NOT NULL,

title VARCHAR(20)

)

)

PARTITION BY List (uuid) (

PARTITION p0 VALUES in (1,2,3,5),

PARTITION p1 VALUES in (7,9,10),

PARTITION p2 VALUES in (11,15)

)

)

解读:以上为uuid 等于1/2/3/5时放到p0分区,7/9/10放到p1分区,11/15放到p2分区。当时用insert into时 如果uuid的值不存在p0/p1/p2分区时,则会插入失败而报错。

3. HASH分区:

HASH分区主要用来确保数据在预先确定数目的分区中平均分布。在RANGE分区和LIST分区中必须明确指定一个指定的列值或列值集合以指定应该保存在哪个分区中。而在HASH分区中,MySQL会自动完成这些工作,要做的只是基于将要被哈希的列值指定一个表达式,以及指定被分区的表将要被分割成的分区数量,如:

CREATE TABLE tbl_test (

uuid INT NOT NULL,

title VARCHAR(20)

))

PARTITION BY HASH (uuid) (

PARTITIONS 3

))

解读:MySQL自动创建3个分区,在执行insert into时,根据插入的uuid通过算法来自动分配区间。

注意:

(1) 由于每次插入、更新、删除一行,这个表达式都要计算一次,这意味着非常复杂的表达式可能会引起性能问题,尤其是在执行同时影响大量行的运算(例如批量插入)的时候。

(2) 最有效率的哈希函数是只对单个表列进行计算,并且它的值随列值进行一致的增大或减小,因为这考虑了在分区范围上的“修剪”。也就是说,表达式值和它所基于的列的值变化越接近,就越能有效地使用该表达式来进行HASH分区。

3.1:线性HASH分区

线性HASH分区在“PARTITION BY”子句中添加“LINEAR”关键字。

线性HASH分区的有点在于增加、删除、合并和拆分分区将变得更加快捷,有利于处理含有及其大量数据的表。它的缺点在于各个分区间数据的分布不大可能均衡。

4. KEY分区

类似于HASH分区,HASH分区允许用户自定义的表达式,而KEY分区则不允许使用用户自定义的表达式;HASH分区只支持整数分区,KEY分区支持除了blob和text类型之外的其他数据类型分区。

与HASH分区不同,创建KEY分区表的时候,可以不指定分区键,默认会选择使用主键或唯一键作为分区键,没有主键或唯一键,就必须指定分区键。

CREATE TABLE tbl_test (

uuid INT NOT NULL,

title VARCHAR(20)

))

PARTITION BY LINEAR Key (uuid)

PARTITIONS 3

解读:根据分区键来进行分区

5. 子分区

子分区是分区表中,每个分区的再次分割,适合保存非常大量的数据。

CREATE TABLE tbl_test (

registerTime Date

))

PARTITION BY GANGE(YEAR(registerTime))

SUBPARTITION BY HASH (TO_DAYS(registerTime))

SUBPARTITIONS 2

(

PARTITION p0 VALUES LESS THAN (2017),

PARTITION p1 VALUES LESS THAN (2020),

PARTITION p2 VALUES LESS THAN MAXVALUE

)

解读:主分区使用RANGE按照年来进行分区,有3个RANGE分区。这3个分区中又被进一步分成了2个子分区,实际上,整个表被分成了3 * 2 = 6个分区。每个子分区按照天进行HASH分区。小于2017的放在一起,2017-2020的放在一起,大于2020的放在一起。

注意:

(1) 在MySQL5.1中,对于已经通过RANGE或LIST分区了的表在进行子分区是可能的。子分区既可以使用HASH分区,也可以使用KEY分区。这也被称为复合分区。

(2) 每个分区必须有相同数量的子分区。

(3) 如果在一个分区表上的任何分区上使用SUBPARTITION来明确定义任何子分区,那么就必须定义所有的子分区。

(4) 每个SUBPARTITION子句必须包含(至少)子分区的一个名字。

(5) 在每个子分区内,子分区的名字必须是惟一的,目前在整个表中,也要保持唯一。例如:

PARTITION BY RANGE(YEAR(registerTime))

SUBPARTITION BY HASH(TO_DAYS(registerTime))

(

PARTITION p0 VALUES LESS THAN (2017) (

SUBPARTITION s0,

SUBPARTITION s1

),

PARTITION p1 VALUES LESS THAN (2020) (

SUBPARTITION s2,

SUBPARTITION s3

),

PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s4,

SUBPARTITION s5

)

)

子分区可以用于特别大的表,可以在多个磁盘间分配数据和索引。例如:

SUBPARTITION s0

DATA DIRECTORY = '/disk0/data'

INDEX DIRECTORY = '/disk0/idx'

,

,

SUBPARTITION s1

DATA DIRECTORY = '/disk1/data'

INDEX DIRECTORY = '/disk1/idx'

九、MySQL分区处理NULL值的方式

MySQL中的分区禁止空值NULL上没有进行处理,无论它是一个列值还是一个用户定义表达式的值,一般而言,在这种情况下MySQL把NULL视为0。如果你希望回避这种做法,你应该在设计表时声明列“NOT NULL”。

十、分区管理概述

可以对分区进行添加、删除、重新定义、合并或拆分等管理 *** 作。

① RANGE和LIST分区的管理

1. 删除分区语句如:alter table tbl_test drop partition p0

注意:

(1) 当删除了一个分区,也同时删除了该分区中所有的数据。

(2) 可以通过show create table tbl_test来查看新的创建表的语句。

(3) 如果是LIST分区的话,删除的数据不能新增进来,因为这些行的列值包含在已经删除了的分区的值列表中。

2. 添加分区语句如:alter table tbl_test add partition(partition p3 values less than(50))

注意:

(1) 对于RANGE分区的表,只可以添加新的分区到分区列表的最高端。

(2) 对于LIST分区的表,不能添加已经包含在现有分区值列表中的任意值。

3. 如果希望能不丢失数据的条件下重新定义分区,可以使用如下语句:

ALTER TABLE tbl_name REORGANIZE PARTITION partition_list INTO(partition_definitions)

(1) 拆分分区如:

ALTER TABLE tbl_name REORGANIZE PARTITION partition_list INTO(partition s0 values less than(5),partition s1 values less than(10))

或者如:

ALTER TABLE tbl_name REORGANIZE PARTITION p0 INTO(partition s0 values in(1,2,3), partition s1 values in(4,5))

(2) 合并分区如:ALTER TABLE tbl_name REORGANIZE PARTITION s0,s1 INTO(partition p0 values in(1,2,3,4,5))

4. 删除所有分区,但保留数据,形式:ALTER TABLE tbl_name remove partitioning

② HASH和KEY分区的管理

1. 减少分区数量语句如:ALTER TABLE tbl_name COALESCE PARTITION 2

2. 添加分区数量语句如:ALTER TABLE tbl_name add PARTITION partitions 2

③ 其他分区管理语句

1. 重建分区 :类似于先删除保存在分区中的所有记录,然后重新插入它们,可用于整理分区碎片。如:ALTER table tbl_name REBUILD PARTITION p2,p3

2. 优化分区 :如果从分区中删除了大量的行,或者对一个带有可变长度的行(也就是说,有VARCHAR,BLOB或TEXT类型的列)做了许多修改,可以使用 ALTER TABLE tbl_name OPTIMIZE PARTITION来收回没有使用的空间,并整理分区数据文件的碎片。如:ALTER TABLE tbl_name OPTIMIZE PARTITION p2,p3

3. 分析分区 :读取并保存分区的键分布,如:ALTER TABLE tbl_name ANALYZE PARTITION p2,p3

4. 检查分区 :检查分区中的数据或索引是否已经被破坏,如:ALTER TABLE tbl_name CHECK PARTITION p2,p3

5. 修补分区 :修补被破坏的分区,如:ALTER TABLE tbl_name REPAIR PARTITION p2,p3

十、查看分区信息

1. 查看分区信息:select * from information_schema.partitions where table_schema='arch1' and table_name = 'tbl_test' G

2. 查看分区上的数据:select * from tbl_test partition(p0)

3. 查看MySQL会 *** 作的分区:explain partitions select * from tbl_test where uuid = 2

十一、 局限性

1. 最大分区数目不能超过1024,一般建议对单表的分区数不要超过50个。

2. 如果含有唯一索引或者主键,则分区列必须包含在所有的唯一索引或者主键在内。

3. 不支持外键。

4. 不支持全文索引,对分区表的分区键创建索引,那么这个索引也将被分区。

5. 按日期进行分区很合适,因为很多日期函数可以用。但是对字符串来说合适的分区函数不太多。

6. 只有RANGE和LIST分区能进行子分区,HASH和KEY分区不能进行子分区。

7. 临时表不能被分区。

8. 分区表对于单条记录的查询没有优势。

9. 要注意选择分区的成本,没插入一行数据都需要按照表达式筛选插入的分区。

10. 分区字段尽量不要可以为null

一、查询mysql表是否为分区表:可以查看表具有哪几个分区、分区的方法、分区中数据的记录数等信息 SELECT PARTITION_NAME,PARTITION_METHOD,PARTITION_EXPRESSION,PARTITION_DESCRIPTION,TABLE_ROWS,SUBPARTITION_NAME,SUBPARTITION_METHOD,SUBPARTITION_EXPRESSION FROM information_schema.PARTITIONS WHERE TABLE_SCHEMA=SCHEMA() AND TABLE_NAME='xw_coobill_order' 二、查询表有多少个分区 SELECT TABLE_NAME, COUNT(*) AS CNT FROM information_schema.PARTITIONS WHERE PARTITION_NAME IS NOT NULL GROUP BY TABLE_NAME ORDER BY CNT DESC LIMIT 50 三、分析执行语句 explain partitions select * from range_datetime where hiredate >= '20151207124503' and hiredate<='20151210111230' 四、分区管理 常规HASH和线性HASH的增加收缩分区的原理是一样的。增加和收缩分区后原来的数据会根据现有的分区数量重新分布。HASH分区不能删除分区,所以不能使用DROP PARTITION *** 作进行分区删除 *** 作; 只能通过ALTER TABLE ... COALESCE PARTITION num来合并分区,这里的num是减去的分区数量; 可以通过ALTER TABLE ... ADD PARTITION PARTITIONS num来增加分区,这里是null是在原先基础上再增加的分区数量。

常听说MySQL中3表 join 的执行流程并不是前两张表 join 得出结果,再与第三张表进行 join;而是3表嵌套的循环连接。那这个3表嵌套的循环连接具体又是个什么流程呢?与前两张表 join 得出结果再与第三张表进行 join 的执行效率相比如何呢?下面通过一个例子来分析分析。

set optimizer_switch='block_nested_loop=off'

关联字段无索引的情况下强制使用索引嵌套循环连接算法,目的是更好的观察扫描行数。

表结构和数据如下:

示例SQL:

通过 slow log 得知一共扫描 24100 行:

执行计划显示用的索引嵌套循环连接算法:

扫描行数构成:

总行数=100+4000+20000=24100。

从这个结果来看,join 过程像是先 t1 和 t3 join 得出 20 行中间结果,再与 t2 进行 join 得出结果。这结论与我们通常认为的 3表 join 实际上是3表嵌套的循环连接不一样,接着往下看。

查看执行计划成本:

mysql>explain format=json select * from t1 join t2 on t1.b=t2.b join t3 on t1.b=t3.b where t1.a<21\G

其他信息:

IO成本= 1*1.0 =1

CPU成本= 100*0.2 =20

t1总成本=21

IO成本= 1*1.0 =1

CPU成本= 200*0.2 =40

t3表总成本= 驱动表扇出*(IO成本+CPU成本) = 20*(1+40) =820

阶段性总成本= 21+820 =841

此处 eval_cost=80,实则为 驱动表扇出*被驱动每次扫描行数*filtered*成本常数 ,即 20*200*10%*0.2 。

简化公式为: eval_cost=rows_produced_per_json*成本常数

IO成本= 4*1.0 =4

CPU成本= 1000*0.2 =200

t2表总成本= 前2表join的扇出*(IO成本+CPU成本) = 400*(4+200) =81600

阶段性总成本= 841+81600 =82441

此处 eval_cost=8000,即 rows_produced_per_json*成本常数 ,即 40000*0.2

根据执行计划成本分析:

这样看,3表 join 流程是:

注意,由于造的数据比较特殊,所以第 3 步得出的中间结果集实际上只有 1行,所以最终 t2 表的查找次数是 20*1=20 ,所以扫描总行数是 20*1000 。所以单看 slow log 中显示的 24100 行,会误认为是先得出 t1 和 t3 join 的结果,再去和 t2 进行 join。

当我调整 t3 的数据,删除20行,再插入20行,使满足 b<21 的数据翻倍,这样“第 3 步得出的中间结果集”变成 2 行:

再来看slow log 中扫描的总行数为44100,t1、t3的扫描行数不变,t2 的扫描行数变为 20*2*1000=40000 :

为什么执行计划中分析得到的是 t2 表查找 400 次呢?

因为执行计划对t1 join t3 的扇出是个估算值,不准确。而 slow log 是真实执行后统计的,是个准确值。

为什么执行计划中,t2表的执行次数是用“t1 join t3 的扇出”表示的?这不是说明 t1 先和 t3 join,结果再和 t2 join?

其实拆解来看,“3表嵌套循环” 和 “前2表 join 的结果和第3张表 join” 两种算法,成本是一样的,而且如果要按3表嵌套循环的方式展示每张表的成本将非常复杂,可读性不强。所以执行计划中这么表示没有问题。

总的来说,对于3表join或者多表join 来说,“3表嵌套循环” 和 “先2表 join,结果和第3张表join” 两种算法,成本是一样的。要注意的一点是3表嵌套循环成本并非如下图写的:n m x,而是 n (m+a x),其中 a 为 t2 满足单个等值条件的平均值。

当被驱动表的关联字段不是唯一索引,或者没有索引,每次扫描行数会大于1时,其扇出误差会非常大。比如在上面的示例中:

t3 实际的扇出只有 20,但优化器估算值是 总扫描行数的 10%,由于t3表的关联字段没有索引,所以每次都要全表扫描200行,总的扫描行数= 20*200 =4000,扇出= 4000*10% =400,比实际的20大了20倍。尤其对于后续表的 join 来说,成本估算会产生更严重的偏差。

如果是 left join,每个被驱动表的 filtered 都会被优化器认定为 100%,误差更大!

通常建议join不超过2表,就是因为优化器估算成本误差大导致选择不好的执行计划,如果要用,一定要记住:关联字段必须要有索引,最好有唯一性或者基数大。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/8678007.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存