创建单个json数组
创建单个对象,并返回该对象
将其他类型的值转换成JSON类型来获取json值
将 json 值作为参数传入,如果值有效,则返回其 json 类型,否则报错
将两个或多个 json 值合并为一个 json 并返回最终值
合并两个或多个 json 值,但不合并重复键的值,如果出现重复键,仅保留最后一个的值
经过函数转换得到的 json 是区分大小写的,原因在于转换后的字符集格式为 utf8mb4 和 utf8mb4_bin ,因为 utf8mb4_bin 是二进制排序规则,所以区分大小写
因为区分大小写,所以 json 中的 null 、 true 和 false 都必须用小写字母编写
直接插入键值对语句和用 JSON_OBJECT 转换成json值存入的差别在于,前者需要双反斜杠转义字符,而后者只需要单反斜杠转义字符
当需要存储的内容如下
使用直接插入的方法时:
使用 JSON_OBJECT 时
案例
因为 $[1] 和 $[2] 计算为非标量值, 所以它们可以用作选择嵌套值的更具体的路径表达式的基础。例子:
结合 JSON_SET``JSON_INSERT``JSON_REPLACE``JSON_REMOVE 的使用
JSON_SET 替换存在的路径的值, 并为不存在的路径添加值
JSON_INSERT 添加新值, 但不替换现有值:
JSON_REPLACE 替换现有值并忽略新值:
JSON_REMOVE 使用一个或多个路径, 这些路径指定要从文档中删除的值。返回值是原始文档减去由文档中存在的路径选择的值:
在MySQL与PostgreSQL的对比中,PG的JSON格式支持优势总是不断被拿来比较。其实早先MariaDB也有对非结构化的数据进行存储的方案,称为dynamic column,但是方案是通过BLOB类型的方式来存储。这样导致的问题是查询性能不高,不能有效建立索引,与一些文档数据库对比,优势并不大,故在社区的反应其实比较一般。当然,MariaDB的dynamic column功能还不仅限于非结构化数据的存储,但不在本文进行展开。MySQL 5.7.7 labs版本开始InnoDB存储引擎已经原生支持JSON格式,该格式不是简单的BLOB类似的替换。原生的JSON格式支持有以下的优势:
JSON数据有效性检查:BLOB类型无法在数据库层做这样的约束性检查
查询性能的提升:查询不需要遍历所有字符串才能找到数据
支持索引:通过虚拟列的功能可以对JSON中的部分数据进行索引
首先我们来看如何在MySQL中使用原生的JSON格式:
mysql>create table user ( uid int auto_increment,
->data json,primary key(uid))engine=innodb
Query OK, 0 rows affected (0.01 sec)
mysql>insert into user values (NULL,
->'{"name":"David","mail":"jiangchengyao@gmail.com","address":"Shangahai"}')
Query OK, 1 row affected (0.00 sec)
mysql>insert into user values (NULL,'{"name":"Amy","mail":"amy@gmail.com"}')
Query OK, 1 row affected (0.00 sec)
可以看到我们新建了表user,并且将列data定义为了JSON类型。这意味着我们可以对插入的数据做JSON格式检查,确保其符合JSON格式的约束,如插入一条不合法的JSON数据会报如下错误:
mysql>insert into user values (NULL,"test")
ERROR 3130 (22032): Invalid JSON text: "Invalid value" at position 2 in value (or column) 'test'.
此外,正如前面所说的,MySQL 5.7提供了一系列函数来高效地处理JSON字符,而不是需要遍历所有字符来查找,这不得不说是对MariaDB dynamic column的巨大改进:
mysql>select jsn_extract(data, '$.name'),jsn_extract(data,'$.address') from user
+-----------------------------+-------------------------------+
| jsn_extract(data, '$.name') | jsn_extract(data,'$.address') |
+-----------------------------+-------------------------------+
| "David" | "Shangahai" |
| "Amy" | NULL |
+-----------------------------+-------------------------------+
2 rows in set (0.00 sec)
当然,最令人的激动的功能应该是MySQL 5.7的虚拟列功能,通过传统的B+树索引即可实现对JSON格式部分属性的快速查询。使用方法是首先创建该虚拟列,然后在该虚拟列上创建索引:
mysql>ALTER TABLE user ADD user_name varchar(128)
->GENERATED ALWAYS AS (jsn_extract(data,'$.name')) VIRTUAL
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql>select user_name from user
+-----------+
| user_name |
+-----------+
| "Amy" |
| "David" |
+-----------+
2 rows in set (0.00 sec)
mysql>alter table user add index idx_username (user_name)
Query OK, 2 rows affected (0.01 sec)
Records: 2 Duplicates: 0 Warnings: 0
然后可以通过添加的索引对用户名进行快速的查询,这和普通类型的列查询一样。而通过explain可以验证优化器已经选择了在虚拟列上创建的新索引:
mysql>explain select * from user where user_name='"Amy"'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user
partitions: NULL
type: ref
possible_keys: idx_username
key: idx_username
key_len: 131
ref: const
rows: 1
filtered: 100.00
Extra: NULL
1 row in set, 1 warning (0.00 sec)
可以发现MySQL 5.7对于JSON格式堪称完美,相信PostgreSQL阵营需要寻找新的策略来“攻击”MySQL了吧。如无意外,还是会停留在优化器这块,毕竟这块是目前MySQL必须要克服的最大问题,好在MySQL团队已经在重构优化器代码,相信更好的优化器将会在下一个版本中全面爆发。而一大堆文档数据库们已经哭晕在厕所了吧。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)