当我们从**中看到的那些智能机器人就如同真的人们一样,可以独立思考行动等等,是不是觉得很神奇,对于人工智能是不是感到很神秘,人工智能是对于人的意识,恩维的信息过程的模拟,人工智能不是人的智能,但是能像人那样的思考,说不定在未来就如同**里一样。
现如今人工智能可以说是越来越火热,人工智能技术也是开始越来越发在我们的生活工作当中出现了身影。当下也吸引着众多的人们前来加入其中,然而对于人工智能的学习,前提是最好掌握好一门编程语言。而当下有着很多编程语言都能和人工智能挂钩,我们要是不会编程语言要选择学习哪门编程语言呢。
那么当下学习人工智能选择学习什么编程语言比较好呢,在这和北大青鸟的小编一起来了解下吧,时下被称为AI第一编程语言的当属PYTHON语言,拥有坚实的数值算法、图标和数据处理基础设施,能够建立非常良好的生态环境,Python的包装能力、可组合性、可嵌入性都很好,可以把各种复杂性包装在Python模块里,就如同胶水一样,能够被集成到其它需要脚本语言的程序内。
人工智能主要学习Python相关的编程。Python是一种解释型脚本语言,可以应用于人工智能、科学计算和统计、后端开发、网络爬虫等领域。
Python语法简单,功能多样,是开发人员最喜爱的AI开发编程语言之一。ython非常便携,可以在Linux,Windows等多平台上使用。另外,Python是一种多范式编程语言,支持面向对象,面向过程和函数式编程风格。
扩展资料:
人工智能专业主干课程:
1、认知与神经科学课程群
具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程。
2、人工智能伦理课程群
具体课程:《人工智能、社会与人文》、《人工智能哲学基础与伦理》。
3、科学和工程课程群
新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、健康的发展道路上。
4、先进机器人学课程群
具体课程:《先进机器人控制》、《认知机器人》、《机器人规划与学习》、《仿生机器人》。
5、人工智能平台与工具课程群
具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》。
6、人工智能核心课程群
具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》。
参考资料:
可以做。
无论是何种软件,其本质都是二进制语言,即供机器识别的机器代码。
而C语言与可以与任意的机器语言语句相对应,也就是任何二进制语言,均可以由C语言实现。
从这个角度来说,C语言可以实现一切功能或软件,同样包括人工智能。
实际上,由于人工智能的运算量很大,在执行的时候需要很高的执行效率,目前主流的人工智能都是由C语言或者C++语言编写的。
人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。
为什么人工智能要用Python?总结了以下三个原因。
1、Python是解释语言,程序写起来非常方便
写程序方便对做机器学习的人很重要。因为经常需要对模型进行各种各样的修改,这在编译语言里很可能是牵一发而动全身的事情,Python里通常可以用很少的时间实现。举例来说,在C等编译语言里写一个矩阵乘法,需要自己分配 *** 作数(矩阵)的内存、分配结果的内存、手动对BLAS接口调用gemm、最后如果没用smart pointer还得手动回收内存空间。Python几乎就是import numpy; numpydot两句话的事。
当然现在很多面向C/C++库已经支持托管的内存管理了,这也让开发过程容易了很多,但解释语言仍然有天生的优势——不需要编译时间。这对机器学习这种需要大量prototyping和迭代的研究方向是非常有益工作效率的。
2、Python的开发生态成熟,有很多库可以用
Python灵活的语法还使得包括文本 *** 作、list/dict comprehension等非常实用的功能非常容易高效实现(bbscniteducn),配合lambda等使用更是方便。这也是Python良性生态背后的一大原因。
相比而言,Lua虽然也是解释语言,甚至有LuaJIT这种神器加持,但其本身很难做到Python这样,一是因为有Python这个前辈占领着市场份额,另一个也因为它本身种种反常识的设计(比如全局变量)。不过借着Lua-Python bridge和Torch的东风,Lua似乎也在寄生兴起。
3、Python效率超高
解释语言的发展已经大大超过许多人的想象。很多比如list comprehension的语法糖都是贴近内核实现的。除了JIT之外,还有Cython可以大幅增加运行效率。最后,得益于Python对C的接口,很多像gnumpy,theano这样高效、Python接口友好的库可以加速程序的运行,在强大团队的支撑下,这些库的效率可能比一个不熟练的程序员用C写一个月调优的效率还要高。
以上就是总结的人工智能要用Python的三个原因。
以上就是关于人工智能要学什么语言才好全部的内容,包括:人工智能要学什么语言才好、人工智能主要学习什么编程、C语言能做人工智能吗等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)