无刷直流电机的转矩脉动的原因

无刷直流电机的转矩脉动的原因,第1张

造成无刷直流电动机转矩脉动的原因很多,主要可以分为以下五个方面:

1.电磁因素引起的转矩脉动

这是由于定子电流和转子磁场相互作用而产生的转矩脉动.它与电流波形、感应电动势波形、气隙磁通密度的分布有着直接关系。理想情况下,定子电流为方波,感应电动势为梯形波,平顶宽度为120°电角度,电磁转矩为恒值。而实际电机中.由于设计和制造方面的原因.很难保持感应电动势为梯形波,或者平顶宽度不是120°电角度:或者由于转子位置检测和控制系统精度不够而造成感应电动势与电流不能保持严格同步;或者电流波形偏离方波,只能近似地按梯形波变化等。这些因素的存在都会导致电磁转矩脉动的产生。抑制电磁因素引起的转矩脉动的方法有优化设计法、最佳开通角法、谐波消去法、转矩反馈法等。

(1)优化设计法。对于无刷直流电动机,磁极形状、极弧宽度、极弧边缘形状对输出电磁转矩都有很大的影啊。当气隙磁通密度呈方波分布时,即感应电动势波形为理想的梯形波时,极弧宽度增加.则电磁转矩增加,转矩脉动减小;当极弧宽度达到π时,电机功率最大,转矩脉动为零。据此,可以通过选择合理的无电磁转矩脉动的电机磁极和极弧的设计方案,改变磁极形状,或增加极弧宽度来有效消除电磁转矩脉动。

(2)最佳开通角法。通过电机优化设计可以消除电磁转矩脉动,但也有不足之处,例如:由于电机绕组的电感限制,即使电机采用恒流源供电.在换流过程中电流不能突变,流入定子绕组的电流波形也不可能是矩形波;另外.对于实际电机,气隙磁场很难保持理想的方波分布,绕组感应电动势波形也并非理想的矩形,这样就无法实现完全从硬件设计上消除电磁转矩脉动。因此.只能通过控制手段和策略来抑制转矩脉动。如采用最佳开通角的方法抑制电磁转矩脉动,即先推导出转矩脉动与开通角之间的函数关系式,再求取电流最优开通角,使电流波形和感应电动势波形的配合适当.从而达到削弱转矩脉动的目的。

(3)谐波消去法。由于无刷直流电机定子电流和转子磁场的非正弦,使得其相互作用产生的电磁转矩含有谐波分量,造成了转矩的脉动。电磁转矩脉动是由相电流和感应电动势相互作用而形成的。可以考虑通过控制电流的谐波成分来消除由此产生的转矩脉动。因为,在理想条件下,无刷直流电动机同频率的磁链谐波与电流谐波(三次谐波除外)相互作用可以产生恒定的转矩,不同次谐波之间是不会产生转矩的。当然,在实际情况下,由于电机的电感限制了电流的变化率,使得输入定子绕组的电流不可能是矩形波.而往往是梯形波。而且,磁链波形的平顶宽度也会小于理想时的120°电角度.使得不同次数的磁链谐波与电流谐波之间也产生了一定的谐波转矩。所以,确定最佳谐波电流的难度是很大的,这也使得谐波

消去法的应用受到了限制。

(4)转矩反馈法。谐波消去法是一种开环控制方法,当存在绕组阻抗不对称和所测电流有误差等于扰时,控制精度将会受到影响。为了克服开环控制方法的缺点,人们提出了从反馈角度考虑抑制转矩脉动的方法,即以转矩为控制对象,进行闭环控制。转矩反馈法的基本原理就是.根据位置和电流信号通过转矩观测器得到转矩反馈信号.再通过转矩控制器反馈给无刷直流电动机的主电路,实现对转矩的实时控制,从而消除转矩脉动。但是,转矩反馈法结构较为繁杂,需预先确定电机参数.且算法复杂.实现起来比较困难。

2.电流换向引起的转矩脉动

无刷直流电动机工作时.定子绕组按一定顺序换流。由于各相绕组存在电感.阻碍电流的瞬时变化.每经过一个磁状态,电枢绕组中的电流从某一相切换到另一相时将引起电磁转矩的脉动。抑制由电流换向引起的转矩脉动的方法有电流反馈法、滞环电流法、重叠换向法、脉宽调制(PwM)斩波法等。

(1)电流反馈法。这种方法就是使非换向相电流保持恒定.从而使换向转矩脉动为零,因为非换向相电流的存在会导致一定的转矩脉动。一般来说,电流反馈控制可以分为两种形式,即直流侧电流反馈控制和交流侧电流反馈控制。直流侧电流反馈控制的电流反馈信号由直流侧取出,主要控制电流幅值。由于直流侧电流反馈控制是根据流过直流电源的电流信号进行的,因此只需要一个电流传感器便可得到电流反馈信号。交流侧电流反馈控制的电流反馈信号由交流侧取出.此时,根据转子的位置来确定要控制的相电流,使其跟随给定。在换向过程中,当非换向电流未到达给定值时,PwM控制不起作用;当非换向电流超过设定值时-PwM控制开始起作用.关断所有开关器件.使电流值下降,直至低于设定值再闭合被关断的开关器件,使其值上升,依此往复,即可实现非换向相电流的调节.直至换向完成。

(2)滞环电流法。在常用的电流控制方法中,除了上述方法外,还有滞环电流控制法。其基本原理是。在电流环中,采用滞环电流调节器(Hysresis current Regulator,HcR),通过比较参考电流和实际电流,使得换向时能够给出适合的触发信号。实际电流的幅值和滞环宽度的大小决定了HcR控制信号的输出。当实际电流小于滞环宽度的下限时,开关器件导通;随着电流的上升,达到滞环宽度的上限时,开关器件关断,使电流下降。实际电流可以是相电流,也可以是逆变器的输入电流。滞环电流法的特点是:应用简单,快速性好,具有限流能力。滞环电流控制方法可分为三种情况:由上升相电流控制的HCR.由非换向电流控制的HcR和由三相相电流独立控制的HcR。比较用这三种方法抑制换向转矩脉动效果的实验证明:后两种情况的换向转矩特性相同.对换向转矩脉动具有较好的抑制效果,且适用于低速。

(3)重叠换向法。电流反馈法、滞环电流法虽然解决了低速换向的转矩脉动问题,但通常在高速时效果不理想。现今,在高速段抑制换向转矩脉动较成熟的方法是重叠换向法。其基本原理是。换向时本应立即关断的功率开关器件并不是立即关断,而是延长了一个时间间隔,并将本不应开通的开关器件提前导通。在传统的重叠换向法中,重叠时间需预先确定.但选取合适的重叠时间较为困难,且不能最大限度地减小转矩脉动。

(4)PwM斩波法。PwM斩波法与交流侧电流反馈控制法较类似,即开关器件在断开前、导通后进行一定频率的斩波,控制换向过程中绕组的端电压.使得各换向电流上升和下降的速率相等,补偿总电流幅值的变化,抑制换向转矩脉动。与重叠换向法相比,该方法具有更小的转矩脉动,适合于精度要求更高的场合。

3.齿槽效应引起的转矩脉动

无刷直流电动机定子铁心为了安放定子绕组必然要有齿和植,由于定子齿槽的存在,引起气隙不均匀,一个齿距内的磁通相对集中于齿部.使气隙磁导不是常数。当转子旋转时。气隙磁场就要发生变化,产生齿槽力矩。齿槽力矩与转子位置有关,因而引起转矩脉动。齿槽力矩是永磁电机的固有特性,在电机低速轻载运行时,齿槽力矩将引起明显的转速波动,进而产生振动和噪声。因此,如何削弱齿槽力矩是永磁电机设计中较为重要的目标之一。

齿槽力矩产生的原因与前述两种引起转矩脉动的原因不同。前述两种引起转矩脉动的原因均在于定子电流与转子磁场的相互作用,而齿槽力矩是由定子铁心与转子磁场相互作用产生的,减少齿槽转矩脉动最普通的方法就是定子斜槽或转子斜极。另外,增大气隙,采用分数稽和磁性槽楔也有助于减小齿槽力矩的波动。当然,消除齿槽效应最好的方法就是采用无槽电机结构。

无槽电机的电枢绕组不管采用何种形式.它的厚度始终是实际气隙的一部分,因此无槽电机的实际等效气隙比有槽电机要大得多.所需要的励磁磁动势也要大许多.这在早期限制了无槽电机的容量和发展:近年来,随着磁性材料的迅猛发展.特别是钕铁硼等高磁能积稀土永磁材料的应用,为无槽电机的实用化创造了条件。采用无槽结构,因为同时具有超大气隙,除了能彻底消除齿槽效应引起的转矩脉动外,还能大幅度削弱由于电枢反应和机械偏心而产生的转矩脉动。

4.电枢反应引起的转矩脉动

电枢磁动势对气隙主磁场的影响.称为电枢反应。无刷直流电动机的电枢反应比较复杂,根据电枢反应的性质,电枢反应磁动势可分解为交轴分量和直轴分量。

交轴电枢反应磁动势会使气隙主磁场波形发生畸变.使气隙主磁场的磁感应强度不再是空载时的方渡,感应电动势也随之畸变。从而导致感应电动势与电枢电流的不匹配,进而引起转矩脉动。现在无刷直流电动机均采用高性能的稀土永磁材料,若采用瓦片形表面贴装式,则交轴电枢反应对气隙主磁场的影响会很微弱。这是因为交轴电枢反应磁路要经过气隙和永磁体[见图6 8(a)],永磁材料的磁导率与空气的磁导率是非常接近的,这就使交轴电枢反应磁路的磁阻很大,交轴电枢反应的磁通很小.其对气隙主磁场的影响可以忽略不计。

直轴电枢反应磁动势在转子旋转过程中对主磁场先去磁、后增磁,使负载每极总磁通在空载每极总磁通的附近变化。这样,感应电动势和电磁转矩也要发生变化,但影响不大。

5.机械加工引起的转矩脉动

机械加工和材料的不一致也是引起无刷直流电动机转矩脉动的重要原因之一。如电机机械加工及装配时产生的尺寸和形位偏差,定子冲片各槽分布不均匀.定子内外圆偏心.定、转子同轴度偏差等产生的单边磁拉力,轴承系统的摩擦转矩不均匀,转子位置传感器定位不准导致的转矩脉动.各相绕组参数不对称及电子元器件性能参数的差异而导致的转矩脉动.磁路中各零件材料特别是永磁体性能不一致而产生的转矩脉动等。因此。提高工艺加工水平也是减少转矩脉动的重要措施。

摘要:本文介绍了二线制热电阻热电偶温度变送器的电路设计, 文章分析了系统实现的理论依据及硬件实现方案,说明了利用VB设计的辅助设计软件。该装置具有精度高、可靠性较好、电路简单、成本低、体积小、生产调试方便等特点, 具有广泛的应用前景。

关键词:二线制;温度;变送器;热电阻;热电偶

中图分类号:TP216 TP212 文献标识码:A 文章编号:1006-883X(2002) 11-0019-07

一、简介

二线制温度变送器分别与热电偶和热电阻相配合,可以将温度信号线性地转换成4~20mA直流标准输出信号。二线制温度变送器应具有如下主要特点:

(1)二根线完成电源的输入及4~20mA直流电流输出, 即二根线既是电源线也是4~20mA标准信号输出线。

(2)由于二线制一体化变送器安装在传感器接线盒中, 所以必须有良好的可靠性、稳定性及较宽温度工作范围(0~85°C) 和较小的温漂,同时要求体积尽可能小。

(3)在热电偶和热电阻温度变送器中采用了线性化电路,从而使变送器的4~20mA输出信号和被测温度呈线性关系。

(4)在热电偶温度变送器中,要进行冷端补偿,冷补范围0~100°C。

变送器在线路结构上分为量程单元和放大单元两个部分,其中放大单元是通用的,而量程单元,则随品种、测量范围的不同而不同。设计电路结构如图1所示。

图中粗线为电源线,细线为信号流程,两根外接导线既是电源线也是信号线。4~20mA信号体制为二线制设计提供了可能性,当被测信号从下量程到上量程 (0%~100%)变化时,二根传输线上电流对应4~20mA变化; 4mA作为变送器电路工作损耗电流,也易于识别断线断电故障。RL为信号采样负载电阻(RL≤250Ω) 。V(AB) 须大于12V以保证系统的正常工作。 在电源正常(17~30V) 的前提下, 回路4~20mA电流I由输入热电阻R或热电偶mV信号确定。

通过框图我们可以看到,首先,需要对信号源所产生的信号进行采集,然后将采集到的信号进行放大、线性化调整、调零调满,最后通过V/I转换把线性反映温度大小的电压信号转化为电流信号I1(0~16mA),加上电路的4mA静态工作电流I2形成4~20mA电流信号通过二线制电源线输出。对于热电偶变送器,采用一个小型CU50热电阻来测量冷端的温度,进行冷端补偿。两种变送器都采用了LM124集成运放,它是四组独立的高增益的内部频率补偿运算放大器。它可以适应本电路单电源工作的要求,电源电压范围大,温度特性很好,性价比高,在后面电路中所用运放全都是LM124。

二、热电阻二线制变送器的设计

热电阻二线制变送器详细电路图如图2(Pt100为例)所示, 下面就各部分工作原理作一下介绍。

1、信号采集电路

热电阻是利用导体的电阻随温度变化而变化的特性测量温度, 常用的有铂电阻Pt100、Pt10铜电阻Cu50、Cu100等。 其阻值与温度关系可通过分度号表查询。

图中是以Pt100热电阻为例(在这里,可以采用其他的热电阻,如Cu50、Cu100等) ,TL431是25V稳压二极管,D2是一个保护二极管,防止输入电压反接可能带来的对电路的影响或者破坏。R1是限流电阻,R2、R3、R4与R5(Pt100)配合使用,组成一个电阻测量电桥。由于一体化二线制热电阻变送器安装在接线盒内,引线电阻忽略不计。R1、R2、R3、R4可以确定下来(其值见图2),其中热电阻R5随着温度变化而变化。R4根据采用的热电阻分度号不同而取不同的值。如Pt100测量时R4取100Ω,Cu50测量时R4取50Ω。电桥中间两点电压作为后续差动放大器的输入信号。分别为:

因R2=R3>>R4及R5, 故:

2、一级放大电路和线性化调整电路

该电路功能之一是把采集到的微弱信号放大,在本级电路中采取了差动放大。同时,与该放大电路连接在一起的还有一个正反馈非线性调整电路,它的主要功能是对热电阻与温度电阻间的非线性进行修正,保证放大器的输出电压被测温度成线性关系。

R7、R8、R9以及LM124构成了放大电路。对于该局部电路,输入信号来自采集到的信号V和V¢,输入信号分别各自经过R7、R8进入LM124的第一组运算放大器, 得到输出电压V1 (在这里没考虑非线性调整电路即反馈回路R6对电路输入的影响)。

V1=V¢+ R9 (V-V¢)/R8

此外,在该电路中还有一个非常重要的部分,那就是线性化调节电路,即本电路中的R6。 对于线性化调节的过程以及原理,我们可以用图3加以解释。

图中虚线表示没有进行线性化调节时输出电压随源温度变化时的曲线,图中实曲线则表示进行R6非线性化调节的具体过程,随着温度升高,输出电压随之提高,正反馈影响增强,只要R6阻值合适可刚好抵消热电阻本身非线性的影响,使得输出电压和温度为线性关系,即图3中直线所示。根据线性化调整原理,线性调整电阻R6的反馈电压V反为:

则实际输出:

由于热电阻线性较好, 经计算调校本电路中R6=82kΩ,热电阻非线性修正可以达到千分之二的精度。

3、调零、电源平衡及二级放大电路

对零点进行调节的电路,实质上就是调节本级放大电压输出的大小, 保证在信号源零度(R5=100Ω, 第一级放大器输出为零)时整个回路电流I1=4mA。它由R10、R16、R13、W1组成,实质上就是在本级电压输入正端叠加一个调零电压,使不足4mA的静态工作电流达到4mA。此外,在该电路中,还有一个部分,那就是减小电源波动对电路输出的影响,即电路中的R15,它可以抑制电源波动带来的影响。当外界电压源发生较大的波动时(或负载电阻RL变化),电路静态工作电流会发生微小变化,我们可以利用R15来稳定输出电流。其工作原理一方面是电源增大带来静态电流增加, 另一方面电源的增大通过R15加到本级放大器的负端起到减法作用, 使本级输出电压下降, 选择合适的R15阻值, 可以保证电源在允许范围内波动时输出电流的稳定。R17决定二级放大倍数。

4、调满电路和V/I转换电路

调满电路是由R18、R20、W2组成的对上一级电压输出V2分压构成。通过对W2的调节,使得最后输出(信号源最高输入时整个电路的输出)达到要求的输出结果V(W2中间抽头电压)。R21、R22、R23、R24、R25及运放组成一个V/I转换电路, 由于R22、R23、R24均为200kΩ的大电阻,R25为100Ω的小电阻,整个电路电流输出I2≈V/R25。R26是一个负载电阻。

三、 热电偶二线制变送器电路设计

热电偶二线制变送器电路和热电阻二线制变送器主要区别在于信号采集和非线性修正部分, 下面我们就这两部分别作介绍。

1、信号采集和一级放大电路

热电偶的输出是随被测温度变化的mV信号。该局部电路设计如图4所示。在电路中,TL431的作用是输出稳定的25V。D0是一个保护二极管,它可以保护电源输入正负反相对电路的危害。通过R3和TL431分压,使TL431两端的工作电压保持在25V,并为后面的冷端补偿,为修正电路和调零电路提供直流电源。在此电路中,铜线绕制的热电阻Cu50起冷端补偿作用。当热电偶的热电势E12随冷端温度的变化而变化时,铜电阻 Cu50两端的电压也随之反方向变化,如果分压电阻R2的阻值选择适当,则Cu50两端电压的变化能自动的补偿冷端温度变化对热电偶热电势的影响。根据冷端补偿的定义,应使50°C与0°C时Cu50两端的电压差等于热电偶在50°C时的热电动势,当冷端温度为零度时存在的电压mV通过后面的调零电路解决,以镍铬-镍硅(镍铝)热电偶(分度号K)测量变送范围0~1300℃为例, K分度50°C时输出热电势等于2022mV即:由此可求得:R2=13kΩ。

电路中,热电偶mV信号和冷补铜电阻两端电压相加,经过R4输入到LM124的第一级放大器,根据放大器工作原理,我们可以得出输出电压(设包括热电偶及冷补之和的输入信号为V)。 设计考虑使得当热电偶的温度达到最大值(1300℃对应热电势为52398mV),放大器的输出电压为25V。也就是说,热电偶冷端温度为0°C时的电压加上热电偶的最大热电势,再乘以放大倍数应等于25V,即:其中,K为LM324的放大倍数,由此可计算出K=40,如果取R4=R5=51kΩ,则R6应为180kΩ。

2、线性化调整电路和二级放大电路

该局部电路(这一级输出V2)是本电路中十分重要的环节,同时也是比较难的环节。因为它涉及到整个电路的线性调节。放大部分在前面已经叙述,现在就线性调节问题加以阐述。具体电路如图5所示(图中几个二极管连接的电路就是线性修正电路)。电路中的R9、R10、R11、R13、R14、R15、R16均为断开,只有在需要时,我们才加上该电阻。

本电路是用一非线性放大电路去校正被测参数的非线性特性, 其原理就是由二极管补偿电阻组成的折线并联支路在输入信号的不同位置相续起作用, 使放大器在信号大小不同位置放大倍数不同, 其非线性特性刚好和被测热电偶非线性特性相反。在本电路中采用六个折点(三个为正三个为负), 折点的位置可改变支路二极管导通电压调整, 调整折线支路电阻大小可改变折线补偿斜率。在实际设计过程中,可取几个点进行修正,对于K分度(检测范围0~1300°C),首先可以假定在0~100°C范围近似线性,非线性误差忽略不计,另外再取500 °C、900°C、1300°C作为修正检测点,当检测点值在要求线性值以上,则表示输出值偏大,这就 需要降低输出,具体措施就是连接D7~D12中某一级调整电路;反之则连接D1~D6中某一级调整电路。电路中拐点选择二极管可根据修正的需要选用硅管或锗管。调整方式如下:首先以0°C调零1000°C调满, 然后按以下顺序反复调校:

A 、对 100°C~500 °C段非线性调整时,我们可以连接D1或者D12这一级,然后调整R9或者R16电阻大小来改变放大器的放大倍数,使其达到规定输出值。如果检测到输出值偏小,要选择R9 D1,计算调整R9的阻值, 促使本段运放放大倍数上升,直到输出电压增大到要求线性值。如果我们检测到输出值偏大,则需要选择R16 、D12。并调整R16阻值,促使本段运放放大倍数下降输出电压减小到要求线性值。

B 、在调节500 °C~ 900°C段非线性调整时,我们可以连接D2、D3或者D10、D11,然后调整R10或者R15的大小。

C、对900 °C~ 1300°C段非线性调整时,根据检测点1300°C输出值偏大或偏小决定选择连接的是剩下两个折线补偿支路(三个二极管)的哪一路, 方法同上。

和热电阻变送器相同,在该电路中的R12的作用是修正电源波动时对整个电路的影响。防止电压源不稳定造成4~20mA波动。调零调满及V/I转换电路也和热电阻相同在此不再赘述。

四、软件设计

1、设计概述

根据在实际设计生产中的需要,对不同分度号不同量程的二线制温度变送器,其电路参数也略有不同, 这给产品的生产调试带来不便, 为此在理论计算分折的基础上设计了一个辅助软件来解决这个问题。在这里,同一类二线制变送器电路原理基本相似,只是有几个电阻参数不同。为此,我们可以设计一个辅助计算软件,来计算不同分度号不同量程变送器电路所对应的合适电阻值。在实际设计过程中,我们可以分两大类:

(1)热电阻二线制变送器

该类电路包括:Pt100、Pt10、Cu50、Cu100、G、二线制变送器。

(2)热电偶二线制变送器

该类电路包括:热电偶K、E、S、B、J、T、WRE二线制变送器。

2、电阻计算的VB界面设计

根据要求,对于该界面,它应集成了检测电路类型选择、电阻计算、具体电路图查看、电阻阻值显示(混和电路原理图)等功能。当我们在选择了所需检测电路类型时,单击确定后,在我们的主体窗口中就可以将各个需计算的电阻显示出来,同时,为了更加清晰的显示各电阻之间的关系以及所计算电阻在电路中的位置,我们还要同时显示出电路原理图,把算出的电阻值显示在原理图上电阻的相应位置。主体窗口中的热电阻、热电偶二线制变送器电路的查看,主要是提供一个全面的设计电路原理图,藉以显示在桌面上,同时消除因为显示电阻值而使电路线路不清楚的影响。界面的主体窗口如下:

(1)电路类型选择设计

在类型中,我们有各种分度的二线制变送器。为此选择ComboBox命令来建立下拉式选择菜单,在该命令的List―list中输入所需各种类型,然后对该下拉菜单进行命名,比如CboOk。此外在主体程序中进行相应的链接。部分链接显示如下:

If CboOkText=“请选择类型”Then MsgBox“必须选择所需要的类型”

If CboOkText= “Pt100(0~500度)”Then……

它的功能主要是通过对类型的控制来选择所需要的计算。

(2)电阻阻值显示(混和电路原理图)设计

A、对于在主体窗口中的电阻值的显示,可以采用TextBox命令来对计算出来的阻值进行显示,由于要有相应的电阻符号(R1或者其它电阻符号),还要采用Lable命令,来显示相应的电阻符号。在对电阻进行计算时,可以采取如下的方式(假设选择的是Pt100二线制变送器,计算某一电阻R9公式已知,计算R9的程序如下):

If CboOkText = "Pt100(0-500度)" Then

Label7(4)Visible = False

Label7(3)Visible = True

Text2Text = (Val(Text1(0)Text) 100 - 25 2809) / (25 01809)

式中Text2Text即表示我们所求的R9,(Val(Text1(0)Text)则表示我们的未知值,或者是已知的需要带入本式计算的值。Label7(3) Visible、Label7(4)Visible是指我们第三个、第四个计算输出的电阻值,在热电阻变送器中,我们的规定它们的单位为kΩ,而在热电偶变送器中,我们规定的单位为欧,为此,在需要显示以kW为单位的电阻值时,我们需要隐藏以W为单位的电阻值。

B、对于同时显示的电路图以及显示在电路中的电阻值,我们必须新建一个窗体Form2以及Form3,同时还要设定一个数据传输模块,藉以从Form1中把计算出的电阻传输到Form2以及Form3的电路原理图中显示。新建窗体或者模块,可以在VB的程序编写界面的工程条中选取新建窗体或者新建模块命令。在模块中,我们可以任意设定变量,但前提是必须与Form1主体程序中的变量一致。

C、Form2、Form3设计思路完全一样,只是在显示热电阻电路时,热电偶电路不显示,在显示热电偶电路时,热电阻电路不显示。这是我们需要利用 Form2Show Form3Hide语句来屏蔽 Form3或者Form2的显示。由于我们有单独的电路显示,为此,当只需要查看电路图而不需要显示电阻值或者那个Lable框时,也需要对在电路图中几个Lable显示框进行屏蔽。

在图例中,我们可以通过左上下拉菜单中选择所需检测温度的电路类型,经过点击确定后,这时,调用后台程序对所需计算的电阻进行计算并显示出来,这里有两种显示方式,其一是在主界面上显示,另外可以在电路原理图的电阻的相应位置显示。此外,我们可以通过热电阻电路、查看热电偶电路来查看我们的所需电路原理图。工作实例见图6。

五、结论

本文介绍的热电阻、热电偶两线制变送器具有电路简单、成本低、可靠性高的特点,精度可以保证在05%以内。可以制成小体积的一体化两线制变送器,直接安装在热电阻、热电偶传感器接线盒内;已产品化批量生产,并得到广泛的应用。同时,本文介绍的辅助设计软件解决了不同分度号、不同量程变送器电路参数不同带来调试困难的问题。具有较强的工程实用价值。

以上就是关于无刷直流电机的转矩脉动的原因全部的内容,包括:无刷直流电机的转矩脉动的原因、求用电流环发生器设计PT100热电阻变送器 的电路、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10104312.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存