阿尔法围棋(AlphaGo)是一款围棋人工智能程序。这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。 阿尔法围棋(AlphaGo)是通过两个不同神经网络“大脑”合作来改进下棋。这些大脑是多层神经网络跟那些Google搜索引擎识别在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像分类器网络处理一样。经过过滤,13 个完全连接的神经网络层产生对它们看到的局面判断。这些层能够做分类和逻辑推理。
这些网络通过反复训练来检查结果,再去校对调整参数,去让下次执行更好。这个处理器有大量的随机性元素,所以人们是不可能精确知道网络是如何“思考”的,但更多的训练后能让它进化到更好。
第一大脑:落子选择器 (Move Picker)
阿尔法围棋(AlphaGo)的第一个神经网络大脑是“监督学习的策略网络(Policy Network)” ,观察棋盘布局企图找到最佳的下一步。事实上,它预测每一个合法下一步的最佳概率,那么最前面猜测的就是那个概率最高的。这可以理解成“落子选择器”。
第二大脑:棋局评估器 (Position Evaluator)
阿尔法围棋(AlphaGo)的第二个大脑相对于落子选择器是回答另一个问题。不是去猜测具体下一步,它预测每一个棋手赢棋的可能,再给定棋子位置情况下。这“局面评估器”就是“价值网络(Value Network)”,通过整体局面判断来辅助落子选择器。这个判断仅仅是大概的,但对于阅读速度提高很有帮助。通过分类潜在的未来局面的“好”与“坏”,AlphaGo能够决定是否通过特殊变种去深入阅读。如果局面评估器说这个特殊变种不行,那么AI就跳过阅读在这一条线上的任何更多落子。
运行围棋程序的Alpha GO计算机属于第四代计算机。AlphaGo是2014年由谷歌旗下的DeepMind公司开发的一款人工智能围棋程序。它使用深度学习等技术,在完全自主学习的情况下实现对弈水平的逐步提升,并且在后续的博弈中,战绩卓著,影响巨大。与此同时,AlphaGo能在人机对弈和机器对弈中独占鳌头,这归功于包括蒙特卡洛树搜索、估值网络、策略网络等技术的融合运用。其中,后两者是一种多层CNN神经网络模型。得益于深度学习理论的发展,AlphaGo获得了更强的智能和不断的进步。
以上就是关于阿尔法围棋的程序原理全部的内容,包括:阿尔法围棋的程序原理、运行围棋程序的alphago计算机属于、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)