一般来讲,零元素多到了一定程度并且没有规律分布的矩阵叫做稀疏矩阵。对稀疏矩阵的压缩存储必须充分考虑以下三个问题:
① 尽可能减少或者不存储零元素以节省空间,降低空间复杂度。
② 尽可能快地实现数据元素的存储位置与原有位置之间的转换。
③ 尽可能不与零元素进行运算,以降低时间复杂度。
稀疏矩阵的压缩存储有三种最常见的方法,分别是三元组顺序表、行逻辑链接顺序表和十字链表。
二维数组在形式上是矩阵,因此一般用二维数组来存储矩阵。在不压缩存储的情况下,矩阵采用按行优先或按列优先方式存储,占用的存储单元数等于矩阵的元素个数。在实际应用中,经常出现一些阶数很高的矩阵,同时在矩阵中非零元素呈某种规律分布或者矩阵中有大量的零元素,若仍然用常规方法存储,可能存储重复的非零元素或零元素,这将造成存储空间的大量浪费。因此对这类矩阵进行压缩存储,从而合理地利用存储空间。
为了节省存储空间,可以利用特殊矩阵的规律,对它们进行压缩存储,也就是说为多个值相同的元素只分配一个存储单元,对零元素不分配空间。适合压缩存储的矩阵一般是值相同的元素或者零元素在矩阵中分布有一定规律的特殊矩阵和稀疏矩阵。常见的特殊矩阵有对称矩阵、三角矩阵和对角矩阵。
for t=1:T; % TM维的局部傅里叶矩阵生成
for m=1:M;
W(t,m)=(exp(-1i2pitm/T))/sqrt(T);
end
end
以上就是关于矩阵的压缩存储例子全部的内容,包括:矩阵的压缩存储例子、矩阵的压缩存储是什么、压缩感知(CS)在局部傅里叶矩阵下的压缩与重构matlab代码等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)