高斯拉普拉斯算子(LOG,Laplacian of Gaussian)常用于边缘/角点检测。其原理是利用拉普拉斯算子识别图像中灰度值变化速度极大值点,利用高斯核平滑图像、以降低拉普拉斯算子对噪声敏感带来的问题。
所以,LOG是由高斯函数和拉普拉斯算子组成的。以下将介绍
1)高斯函数
2)拉普拉斯算子
3)二者结合的必要性
4)LOG的平替
高斯函数卷积核与图像进行卷积,目的是为了 平滑图像 ,这个卷积过程也常被成为高斯平滑。实质是 以高斯函数的积分值作为权重对卷积区域的点进行加权求和 ,卷积区域的中心点对应的权重对应高斯函数对称轴附件区域的积分值,权重最高。所以此平滑方法能够有效地刻画边缘效应。
高斯函数公式:
其中, 为标准差,其值越大,平滑程度越大 。可以根据高斯函数曲线去理解,标准差越大,曲线越矮胖,邻域像素值的权重也就越大。
如何确定高斯核的大小呢?研究表明,距离中心点 范围外的点一般作用很小,所以 高斯核尺寸通常为 。
拉普拉斯算子是对图像 求两个方向的二阶导数之和 ,其中 为图像像素的灰度值 。
求导,可以获得局部区域的灰度值变化幅度,从而检测出边缘/角点。至于为什么求二阶导而不是一阶导,是因为一阶导之后求的是极值,二阶导之后求的是零点,零点比极值更方便获得。
首先, 求导使计算对噪点变得很敏感 ,需要在求导之前先进行图像平滑。
其次,先对图像进行高斯卷积,再进行拉普拉斯算子卷积,两次卷积会产生较大计算量。而根据卷积运算的结合律,可以先计算高斯函数与拉普拉斯算子,形成一个卷积核,然后对图像进行一次卷积,大大 减小计算量 。
我们常用DOG(Difference of Gaussian)来近似LOG,这是将两个大小不同的高斯核与图像分别卷积后进行差分,可以产生一种LOG的平方近似。在 计算速度上有较大的提高 。
参考文献
>
主要是平滑图像~~~高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:
(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.
(2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.
(3)高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频所污染,同时保留了大部分所需.
(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.
(5)由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.
硬之城上面应该有这个,可以去看看有没有教程之类的,因为毕竟上面的技术资料型号等都很全面也是最新的,所以能解决很多问题。
以上就是关于为什么高斯平滑能保留图像的全局特征全部的内容,包括:为什么高斯平滑能保留图像的全局特征、OpenCV(二)掩码 *** 作与平滑(均值,高斯模糊)、高斯拉普拉斯算子LOG等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)