matlab关于压缩感知的峰值信噪比,运行时间,相对误差,重构概率的定义或资料

matlab关于压缩感知的峰值信噪比,运行时间,相对误差,重构概率的定义或资料,第1张

一种常用的峰值均方误差PMSE:

式中,A为 的最大值。实用中还常采用简单的形式 。此时,对于8比特精度的图像,A=255,M、N为图像尺寸。

峰值均方误差PMSE也被表示成等效的峰值信噪比PSNR:

尽管压缩感知是由 E J Candes、J Romberg、T Tao 和D L Donoho 等科学家于2004 年提出的。但是早在上个世纪,相关领域已经有相当的理论和应用铺垫,包括图像处理、地球物理、医学成像、计算机科学、信号处理、应用数学等。

可能第一个与稀疏信号恢复有关的算法由法国数学家Prony 提出。这个被称为的Prony 方法的稀疏信号恢复方法可以通过解一个特征值问题,从一小部分等间隔采样的样本中估计一个稀疏三角多项式的非零幅度和对应的频率。而最早采用基于L1范数最小化的稀疏约束的人是B Logan。他发现在数据足够稀疏的情况下,通过L1范数最小化可以从欠采样样本中有效的恢复频率稀疏信号。D Donoho和BLogan 是信号处理领域采用L1范数最小化稀疏约束的先驱。但是地球物理学家早在20 世纪七八十年代就开始利用L1范数最小化来分析地震反射信号了。上世纪90 年代,核磁共振谱处理方面提出采用稀疏重建方法从欠采样非等间隔样本中恢复稀疏Fourier 谱。同一时期,图像处理方面也开始引入稀疏信号处理方法进行图像处理。在统计学方面,使用L1范数的模型选择问题和相关的方法也在同期开始展开。

压缩感知理论在上述理论的基础上,创造性的将L1范数最小化稀疏约束与随机矩阵结合,得到一个稀疏信号重建性能的最佳结果。

压缩感知基于信号的可压缩性, 通过低维空间、低分辨率、欠Nyquist采样数据的非相关观测来实现高维信号的感知,丰富了关于信号恢复的优化策略,极大的促进了数学理论和工程应用的结合 。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。

以上就是关于matlab关于压缩感知的峰值信噪比,运行时间,相对误差,重构概率的定义或资料全部的内容,包括:matlab关于压缩感知的峰值信噪比,运行时间,相对误差,重构概率的定义或资料、压缩感知的历史背景、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10177492.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存