Primer-BLAST,在线设计用于聚合酶链反应(PCR)的特异性寡核苷酸引物。
这个工具整合了目前流行的Primer3软件,再加上NCBI的 Blast进行引物特异性的验证。Primer-BLAST免除了用另一个站点或工具设计引物的步骤,设计好的引物程序直接用Blast进行引物特异性验证。
内容复杂度高。blast算法是一种常用序列对比算法,其在进行计算时,由于其内容复杂度高,导致其容错率较低,在进行运算时较难。blast算法又名基本局部相似性比对搜索工具,是1990年所出现的。
GeneGazer是一个,不过上网看了以后觉得貌似据说比较戳。。。
下面是一篇文章,MAYBE对你有用,我虽然也学生物滴,不过跟生物信息学没什么交集哈。。。
Wisconsin 软件包( GCG )
Genetics Computer Group 公司开发的 Wisconsin 软件包,是一组综合性的序列分析程序,使用公用的核酸和蛋白质数据库。 SeqLab 是其图形用户界面( GUI ),通过它可以使用所有 Wisconsin 软件包中的程序及其支持的数据库。此外,它还提供了一个环境用于创建、显示、编辑和注释序列。 SeqLab 也可以被扩展使其可以包括其它公用或非公用的程序和数据库。
Wisconsin软件包由120多个独立的程序组成,每个程序进行一项单一的分析任务。包括所有程序的完整目录以及详细的描述可以在Wisconsin软件包的程序使用文档中找到。GCG支持两种核酸数据库(GenBank数据库, 简化版的EMBL核酸序列数据库)和三种蛋白质数据库(PIR,SWISS-PROT, SP-TrEMBL)。这些数据库既有GCG格式的(供大多数Wisconsin软件包程序使用),也有BLAST格式的(供BLAST数据库搜索程序使用)。同时还提供了用于LookUp程序以及数据库参考搜索的索引。
关于GCG,Wisconsin软件包,支持的平台以及硬件需求的一般性信息可以在GCG的主页以及Wisconsin软件包的用户手册中找到。GCG主页提供了更新信息以及Wisconsin软件包程序的完整列表。
SeqLab中可以使用多个序列分析程序的特性使用户可以应用这些程序顺序地回答相关问题或在对输入序列进行编辑后重复某项分析。而可以同时访问公用数据库和本机序列的优点使用户可以在一个分析中使用其中任意一种而不用先进行转换或格式化的工作。SeqLab可以解决的序列分析问题:
(1)在两条mRNA中寻找开放阅读框架,翻译并对比RNA与蛋白质序列
对两条相关的mRNA进行测序的用户可能希望寻找开放阅读框架(ORF)、翻译以及进行核酸与氨基酸序列间的两两对比。
把序列加入SeqLab Editor中,从Functions菜单中选中Map选项运行Map程序。Map输出文件包含了限制性酶切图和6种可能的翻译框架的ORF的显示。这些ORF的起始和终止位置可进行标记并选为SeqLab Editor中序列显示的范围,然后可用Edit菜单的Translate *** 作进行翻译。翻译结果自动出现在SeqLab Editor中。
两条相关的核酸或蛋白质序列可用Gap程序或BestFit程序进行对比。Gap程序寻找两条序列间的全局最优对比结果。适用于两条待比对的序列是进化相关的情况。BestFit程序寻找两条序列的局部最优对比结果,它适用于两条序列不是进化相关而是功能相关的情况。
(2)通过参考搜索寻找数据库中的相关条目并进行对比
研究一个特征序列家族成员的用户可能希望寻找这个家族中的其它成员并建立它们的多序列对比。
从Functions菜单中选取LookUp程序。LookUp在数据库条目的参考信息部分搜索描述词并建立匹配条目的列表。在参考部分的Definiton, Author, Keyword和Organism域中搜索描述词并在词之间使用“and”(&)、“or”(|)以及“but not”(!)布尔表达式。例如,在SWISS-PROT条目的Description域搜索“lactate & dehydrogenase & h & chain”将产生一个输出文件,其中列出了乳酸脱氢酶 H 链(lactate dehydrogenase H chain)条目。这个输出文件可以从Output Manager窗口中加以显示,然后与用户的序列一起添加到SeqLab Editor中。
要创建所有这些序列的多序列对比,只要根据序列名称选中这些序列并从Functions菜单中运行PileUp程序。由PileUp产生的多序列文件也列在Output Manager窗口中并可以直接添加到SeqLab Editor中。推荐采用这一步的原因在于数据库条目的特征表格(Features table)信息可与对比结果一起被包括进来。必要时对比结果是可以被编辑的,并且如果数据库条目有相似的特征,这些特征可被附加给用户序列。
(3)用查询序列搜索数据库,将找到的条目与查询序列进行对比并产生进化系统树
克隆并测序一个未知功能基因的用户可能希望在一个数据库中搜索相似的序列。如果搜索到了,用户可能进一步希望创建与查询序列最相似的序列的多序列对比并产生数据的种系图。
往SeqLab Editor中添加一个查询序列并从Functions菜单中选取FASTA程序。FASTA程序在数据库中搜索与查询序列相似的序列。输出文件可从Output Manager窗口中加以显示并直接添加到SeqLab Editor中。在这个输出文件中数据库条目与查询序列局部相似性最好的区域被加以标记。如果要显示的话,每个数据库条目只有这种区域可以显示在SeqLab Editor中。不要的条目可以从SeqLab Editor中一起被删除。
从Functions菜单中选中PileUp程序创建这些序列的多序列对比。输出可从Output Manager窗口中加以显示并添加到SeqLab Editor中更新已经存在的未对比序列。必要时可对这一对比结果进行编辑,并且数据库条目的有用的特征表格信息也可以添加给查询序列。
从Functions菜单中选取PaupSearch程序,程序提供了一个PAUP(进化系统简约性分析(Phylogenetic Analysis Using Parsimony))中树搜索方式的GCG接口。PaupDisplay程序为PAUP中的树 *** 作,鉴定以及显示方式提供了一个GCG接口。
(4)拼接交叠序列片段产生一连续序列,寻找并翻译这一序列的编码区域并在数据库中搜索相似序列
克隆了一个基因,把它分解克隆为一组有交叠的序列片段并进行了测序的用户可能希望把这些序列片段重新组装为一条连续的序列。一旦contig拼接完成,用户可能希望在序列中寻找阅读框架,翻译并在数据库中搜索相似序列。
Fragment Assmbly System的程序可用于拼接交叠序列片段。GelStart程序创建一个项目。GelEnter程序把序列片段复制到项目中。GelMerge程序寻找片段之间的交叠并把它们拼接成contig。GelAssemble程序是一个编辑器,可用于编辑这些连续的部分并解决片段之间的冲突问题。所有这些程序都可以从Functions菜单中选取。一旦拼接完成,最终构成此contig的连续序列可以被保存为一个序列文件并添加到SeqLab Editor中。
使用Map、Frames、TestCode或Codon Preference程序可预测序列中的编码区(所有这些程序可以从Functions菜单中选中)。使用Edit菜单的Select Range功能选择这些程序预测的区域并使用Edit菜单中的翻译 *** 作把它们翻译为蛋白质。这些提出的翻译区域也可以作为核酸共有序列的特征被加入。
选取蛋白质序列然后选择Functions菜单中BLAST。BLAST程序在数据库中搜索与查询序列相似的条目,此程序既可以进行远程搜索也可以进行本机搜索。搜索结果可以从Output Manager窗口中加以显示。如果被搜索的是一个本机的数据库,结果文件可以加入SeqLab Editor或Main List窗口中,并允许对找到的序列进行进一步分析。
(5)对比相关的蛋白质序列,计算对比结果的共有序列,辨识序列中新的特征序列模式,在数据库中搜索包含此模式的序列或在对比结果的共有序列中搜索已知的蛋白质模式
辨识了一组相关序列的用户可能希望对其进行对比并计算对比结果的共有序列。如果可以在对比结果中找到保守模式,用户可能希望在数据库中搜索包含这种模式的其它序列。用户可能还希望在计算出的共有序列搜索已知的蛋白质模式。
选取待对比的序列,从Functions菜单中选取PileUp程序创建多序列对比,PileUp程序的输出文件可从Output Manager窗口中加以显示并添加到SeqLab Editor中。用户可以对对比结果的某个区域重新加以对比并以此替换原有的对比结果。只要选取一个区域并重新运行PileUp即可。从PileUp Options窗口中选取"realign a portion of an existing alignment(重新对比一个已存在的对比结果的一部分)",这可能有利于选择一个替代评分矩阵或不同的创建和扩展处罚。新的输出文件将包含最初的对比结果以及替换原始对比结果的重新对比的区域。
用Edit菜单中Consensus *** 作计算对比结果的共有序列。如果保守模式可被辨识,从Functions菜单中选取FindPatterns选项。从共有序列中剪切下此特征序列模式并把它粘贴到FindPatterns模式选择器中,并在数据库中搜索包含这一模式的序列。
此外,运行Motif程序可在共有序列中搜索已知的蛋白质模式。Motif在蛋白质序列中搜索在PROSITE,蛋白质位点和模式的PROSITE字典中已知的蛋白质模式。如果辨识出一个Motif,则给所有序列增加一个特征,并标出它的位置。图49显示了一个蛋白质序列的匹配、一个共有序列以及Motif搜索的结果。
(6)使用Profile进行相似性搜索并对比相关序列
假设有一序列数据(sequencefa,多序列,fasta格式),欲自己做成Blast数据库,典型的命令如下:核酸序列:$ /formatdb –i sequencefa –p F –o T/F蛋白序列:$ /formatdb –i sequencefa –p T –o T/F执行blast:获得了单机版的Blast程序,解压开以后,如果有了相应的数据库(db),那么就可以开始执行Blast分析了。单机版的Blast程序包,把基本的blast分析,包括blastn,blastp,blastx等都整合到了blastall一个程序里面。以下是一个典型的blastn分析命令:(待分析序列seqfa,数据库nt_db)$/blastall –p blastn –i seqfa -d nt_db –w 7 –e 10 –o seqblastnout(该命令的意思是,对seqfa文件中的核酸序列对nt_db数据库执行blastn搜索,窗口大小是7,e值限制是10,输出的结果保存到文件seqblastnout 中)。Blastall的常用参数:-p 程序名应该是blastn,blastp,blastx,tblastn,tblastx中的一个-d 数据库名称,默认nr-i 查询序列文件,默认stdin-e E值限制,默认10-o 结果输出文件,默认stdout-F 过滤选项,默认T-a 选择进行运算的CPU个数
BLAST包含五 个程序和若干个相应的数据库,分别针对不同的查询序列和要搜索的数据库类型。其中翻译的核酸库指搜索比对时会把核酸数据按密码子按所有可能的阅读框架转换成蛋白质序列。
BLAST对序列格式的要求是常见的FASTA格式。FASTA 格式第一行是描述行,第一个字符必须是“>”字符;随后的行是序列本身,一般每行序列不要超过80个字符,回车符不会影响程序对序列连续性的看法。 序列由标准的IUB/IUPAC氨基酸和核酸代码代表;小写字符会全部转换成大写;单个“-”号代表不明长度的空位;在氨基酸序列里允许出现“U”和 “”号;任何数字都应该被去掉或换成字母(如,不明核酸用“N”,不明氨基酸用 “X”)。此外,对于核酸序列,除了A、C、G、T、U分别代表各种核酸之外,R代表G或A(嘌呤);Y代表T或C(嘧啶);K代表G或T(带酮基);M 代表A或C(带氨基);S代表G或C(强);W代表A或T(弱);B代表G、T或C;D代表G、A或T;H代表A、C或T;V代表G、C或A;N代表A、 G、C、T中任意一种。对于氨基酸序列,除了20种常见氨基酸的标准单字符标识之外,B代表Asp或Asn;U代表硒代半胱氨酸;Z代表Glu或Gln; X代表任意氨基酸;“”代表翻译结束标志。
BLASTp:用蛋白质序列搜索蛋白质序列库
BLASTn:用核酸序列搜索核酸库
BLASTx:核酸序列对蛋白质库的比对,核酸序列在比对之前自动按照六个读码框翻译成蛋白质序列
tBLASTn:蛋白质序列对核酸库的比对,核酸库中的序列按照六个读码框翻译后与蛋白质序列进行比对搜索
tBLASTx:核酸序列对核酸库在蛋白质质级别的比对,两者都在搜索之前翻译成为蛋白质质进行比对
序列比对是将两个或多个序列排列在一起,标明其相似之处。使用间隔表示未比对上,比对上的相同或相似的符号排列在同一列上。序列比对是生物信息学以及基因组学与进化的基础之一,其基本思想是:在生物学中普遍存在的序列决定结构、结构决定功能的规律,通过将核酸序列或者蛋白质序列的一级结构看成由基本字符构成的字符串,通过序列比对我们可以找到相似的序列并由此发现生物序列中的功能、结构和进化信息。
全局比对:全局比对是指将参与比对的两条序列里面的所有字符进行比对。全局比对在全局范围内对两条序列进行比对打分,找出最佳比对,主要被用来寻找关系密切的序列。其可以用来鉴别或证明新序列与已知序列家族的同源性,是进行分子进化分析的重要前提。其代表是Needleman-Wunsch算法。
局部比对:与全局比对不同,局部比对不必对两个完整的序列进行比对,而是在每个序列中使用某些局部区域片段进行比对。其产生的需求在于、人们发现有的蛋白序列虽然在序列整体上表现出较大的差异性,但是在某些局部区域能独立的发挥相同的功能,序列相当保守。这时候依靠全局比对明显不能得到这些局部相似序列的。其次,在真核生物的基因中,内含子片段表现出了极大变异性,外显子区域却较为保守,这时候全局比对表现出了其局限性,无法找出这些局部相似性序列。其代表是Smith-Waterman局部比对算法。
双重序列比对:双序列比对是指对两条序列M和N进行比对,找到其相似性关系,这种寻找生物序列相似性关系的过程被称为双序列比对。其算法可以主要分成基于全局比对的Needleman-Wunsch算法和基于局部比对的Smith-Waterman局部比对算法
多重序列比对:多序列比对是双序列比对推广,即把两个以上字符序列对齐,逐列比较其字符的异同,使得每一列字符尽可能一致,以发现其共同的结构特征的方法称为多序列比对。多序列比对算法可以分成渐进法和同步法。其可以发现不同的序列之间的相似部分,从而推断它们在结构和功能上的相似关系,主要用于分子进化关系,预测蛋白质的二级结构和三级结构、估计蛋白质折叠类型的总数,基因组序列分析等。
基因组比对:是多序列比对的一种特例,指对基因组范围内的序列信息进行比对的过程。通过对不同亲缘关系物种的基因组序列进行比较,能够鉴定出编码序列、非编码调控序列及给定物种独有的序列。而基因组范围之内的序列比对,可以了解不同物在核苷酸组成、同线性关系和基因顺序方面的异同,进而得到基因分析预测与定位、生物系统发生进化关系等方面的信息。
BLAST:BLAST[1](Basic Local Alignment Search Tool)是在在1990年由Altschul等人提出的双序列局部比对算法,是一套在蛋白质数据库或DNA数据库中进行相似性比较的分析工具。BLAST是一种启发式算法,用于在大型数据库中寻找比对序列,是一种在局部比对基础上的近似比对算法,可以在保持较高精度的情况下大大减少程序运行的时间。
算法思想描述:
双重序列比对主要分成以Needleman-Wunsch算法为代表的全局比对和以Smith-Waterman局部比对算法为代表的局部比对,BLAST是局部比对的一种推广。多重比对算法可以主要分成动态规划算法、随机算法、迭代法和渐进比对算法。
(1)双重序列比对:
Needleman-Wunsch算法:该算法是基于动态规划思想的全局比对的基本算法,动态规划的比对算法的比对过程可以用一个以序列S为列,T为行的(m+1)×(n+1)的二维矩阵来表示,用
sigma表示置换矩阵。
在计算完矩阵后,从矩阵的右下角单元到左上单元回溯最佳路径(用箭头表示),根据最佳路径给出两序列的比对结果。其中,斜箭头表示2个残基匹配,水平箭头表示在序列S的相应位置插入一个空位,垂直方向的箭头表示在序列T的相应位置插入一个空位。
Smith-Waterman算法:该算法是一种用来寻找并比较具有局部相似性区域的动态规划算法,这种算法适用于亲缘关系较远、整体上不具有相似性而在一些较小的区域上存在局部相似性的两个序列。该算法的基本思想是:使用迭代方法计算出两个序列的相似分值,存在一个得分矩阵M中,然后根据这个得分矩阵,通过动态规划的方法回溯找到最优的比对序列。与全局比对相比,这种算法的改变是把矩阵单元值为负者一律取为0,这是因为分值为负的比对丧失了比对的生物学意义,因此把得分为负值的子序列丢弃。
BLAST: BLAST算法的基本思想是通过产生数量更少的但质量更好的增强点来提高比对的速度。算法的原理主要分为以下五步:(1)过滤:首先过滤掉低复杂度区域,即含有大量重复的序列;(2)Seeding:将Query序列中每k个字组合成一个表,即将一个序列拆分成多个连续的‘seed words’(通常蛋白质k=3,核酸k=11);(3)比对:列出我们所关心的所有可能的字组,再配合置换矩阵给出高分值的字组并组织成快速搜索树结构或者哈希索引,因此此步骤可以快速搜索出大数据集中的所有匹配序列,找到每个seed words在参考序列中的位置;(4)延伸:当找到seed words的位置后,接下来需要将seed word延伸成长片段,延伸过程中,得分值也在变化,当得分值小于阈值时即停止延伸,最后得到的片段成为高分片段对,HSP(High-scoring segment pair);(5)显著性分析,最后我们使用如下公式计算E值,E值衡量了在随机情况下,数据库存在的比当前匹配分数更好的比对的数目,因此可以用该值作为指标评价HSP比对序列的可信度。
其中,m是数据库长度,n是query的长度,S是HSP分数,其他两个参数是修正系数。
(2)多重序列比对
动态规划算法:其基本思想是将一个二维的动态规划矩阵扩展到三维或者多维,多序列比对的积分是n个序列中两两进行比对所得积分之和。矩阵的维度反映了参与比对的序列数。这种方法对计算资源要求比较高[6]。
随机算法:主要包括遗传算法和模拟退火算法,遗传算法是一类借鉴生物界进化规律演化来的全局意义上的自适应随机搜索方法。当用遗传算法进行生物序列分析时,每一代包含固定数量的个体,这些个体用他们的适应度来评价。变异则模拟了生物进化过程中的偶然残基突变现象。对产生的新一代群体进行重新评价、选择、交叉、变异,如此循环往复,使群体中最优个体的适应度不断提高,直到达到一个阈值,算法结束。模拟退火的基本思想是用一物质系统的退火过程来模拟优化问题的寻优方法,当物质系统达到最小能量状态时,优化问题的目标函数也相应地达到了全局最优解。这两种方法都是对构造好的目标函数进行最优解搜索,但实际比对效果并不好[6,7]。
迭代法:迭代法的代表是Muscle[8], Muscle是一个新的渐进比对和迭代比对的综合算法,主要由两部分构成,第一部分是迭代渐进比对:第一次渐进比对的目的是快速产生一个多序列比对而不强调准确率,以此为基础再对渐进比对进行改良。经过两次渐进比对,形成一个相对准确的多序列比对;第二部分是迭代比对:该过程类似于Prrp算法[9],即通过不断的迭代,逐步优化最终比对结果。其主要特点包括:使用kmer counting进行快速的距离测量,使用一个新的图谱比对打分函数进行渐进比对,使用依赖于数的有限分隔进行细化。
渐进比对算法:该算法以Feng和Doolittle提出的最为经典[10]。渐进比对算法的基本思想是迭代地利用两序列动态规划比对算法,先由两个序列的比对开始,逐渐添加新序列,直到所有序列都加入为止。但是不同的添加顺序会产生不同的比对结果。确定合适的比对顺序是渐进比对算法的一个关键问题。通常,整个序列的比对应该从最相似的两个序列开始,由近至远逐步完成。作为全局多序列比对的渐进比对算法有个基本的前提假设:所有要比对的序列是同源的,即由共同的祖先序列经过一系列的突变积累,并经自然选择遗传下来的,分化越晚的序列之间相似程度就越高。因此,在渐进比对过程中,应该对近期的进化事件比远期的进化事件给予更大的关注。由于同源序列是进化相关的,因此可以按着序列的进化顺序,即沿着系统发育树(指导树)的分支,由近至远将序列或已比对序列按双序列比对算法逐步进行比对,重复这一过程直到所有序列都己添加到这个比对中为止[10]。其三个步骤为:(1)利用双序列比对方法对所有的序列进行两两比对,得到相似性分值;(2)利用相似性矩阵(或距离矩阵)产生辅助导向树;(3)根据导向树进行渐进比对。渐进比对算法是最常用、简单又有效的启发式多序列比对方法,它所需时间较短、所占内存较小,其算法很多,主要有CLUSTAL W, T-Coffee和DiAlign等,其中 CLUSTAL W应用最广泛。
应用:
类型+应用
双重序列对比:判断两个序列的同源性和一致性。(1)全局多序列比对可以鉴别或证明新序列与己有序列家族的同源性;帮助预测新蛋白质序列的二级和二级结构,是进行分子进化分析的重要前提。适合序列相似性较高,序列长度近似时的比对;(2)局部比对考虑序列部分区域的相似性。局部多序列比对可以用来刻画蛋白质家族和超家族。适合于未知两个序列相似程度的,可能存在一些片段极其相似而另一些片段相异的序列比对情况。
多重序列比对:多重比对经常用来研究序列间的进化关系,构建进化树;探究序列间的保守性。主要用于分子进化关系,预测蛋白质的二级结构和三级结构、估计蛋白质折叠类型的总数,基因组序列分析等。
基因组比对:通过对不同亲缘关系物种的基因组序列进行比较,能够鉴定出编码序列、非编码调控序列及给定物种独有的序列。而基因组范围之内的序列比对,可以了解不同物在核苷酸组成、同线性关系和基因顺序方面的异同,进而得到基因分析预测与定位、生物系统发生进化关系等方面的信息。
其中,BLAST作为最重要的比对工具,意义特殊,拿出来单独讨论。BLAST可以分成Basic BLAST和 Specialized BLAST, BLAST包括常规的nucleotide blast, Protein blast和Translating blast;Specialize blast可以对特殊生物或特殊研究领域的序列数据库进行检索。
以上就是关于primer blast怎么用全部的内容,包括:primer blast怎么用、blast算法难点、用 生物信息学软件 解决 一个生物学问题等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)