如果linux中已经提供了驱动,并且在/dev/目录下已经提供了相应的设备文件节点。那么可以和串口一样直接打开设置读写。如果内核中有驱动,但是没有生成设备文件节点,那么只要知道设备的主次设备号,可以使用mknode建立设备文件节点,然后直接来使用。如果没有驱动就需要自己添加设备驱动了。这个也分两种情况,看你外设怎么和你的板子连接的。如果接到板子上的spi控制器上,可以直接编写通过控制器来控制外设的驱动,这种情况一般生产主控芯片的厂家都已经提供了驱动。如果没有接到spi控制器上,而是通过gpio连接的外设,你编写的驱动就需要自己来模拟spi协议来控制外设。
GPIO10,UART0,UART1,I2C和SPI接口的用途及优缺点:
1、SPI: SPI(Serial Peripheral Interface)是MOTOROLA公司提出的同步串行总线方式。高速同步串行口。3~4线接口,收发独立、可同步进行
因其硬件功能强大而被广泛应用。在单片机组成的智能仪器和测控系统中。如果对速度要求不高,采用SPI总线模式是个不错的选择。它可以节省I/O端口,提高外设的数目和系统的性能。
标准SPI总线由四根线组成:串行时钟线(SCK)、主机输入/从机输出线(MISO)。主机输出/从机输入线(MOSI)和片选信号(CS)。有的SPI接口芯片带有中断信号线或没有MOSI。
2、SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。
主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。
3、I2C:(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备
4、I2C总线用两条线(SDA和SCL)在总线和装置之间传递信息,在微控制器和外部设备之间进行串行通讯或在主设备和从设备之间的双向数据传送。I2C是OD输出的,大部分I2C都是2线的(时钟和数据),一般用来传输控制信号。
I2C是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。多路微控制器能在同一个I2C总线上共存。
5、I2S(Inter-IC Sound Bus)是飞利浦公司为数字音频设备之间的音频 数据传输而制定的一种总线标准。
I2S则大部分是3线的(除了时钟和数据外,还有一个左右声道的选择信号),I2S主要用来传输音频信号。如STB、DVD、MP3等常用
6、UART:通用异步串行口。按照标准波特率完成双向通讯,速度慢。
UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。
SPI是串行扩展总线。
串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。同时系统的更改和扩充极为容易。
常用的串行扩展总线有:I2C(Inter IC Bus)总线、单总线(1-WIRE BUS)、SPI(Serial Peripheral Interface)总线及Microwire/PLUS等。
一、SPI协议
SPI总线是微控制器四线的外部总线。SPI没有明文标准,是一种事实总线,对通信 *** 作的实现由芯片厂商和驱动开发者通过data sheet和application notes沟通实现的细节。SPI是四根信号线协议,如下:
SCLK:Serial Clock(Output from master);
MOSI:Master Output Slave Input(Outpt from Master);
MISO:Master Input Slave Output(Output from Slave);
SS:Slave Select(Active low,Output from Master);
二、 SPI协议通信
SPI是单主设备通信,总线中只有一个设备发起通信,能发起通信的设备称为主设备。当SPI主设备想读/写从设备时,首先拉低对应从设备的SS线(SS是低电平有效);然后发送工作脉冲到时钟线上,在相应的脉冲时间上,主设备把信号发到MOSI实现写,同时可以对MISO线采样实现读。
三、SPI *** 作模式
SPI有四种 *** 作模式:模式0、模式1、模式2、模式3。
这几个模式之间的区别是定义了在时钟脉冲的哪条边沿转换(toggles)输出信号,哪条边沿采样输入信号,还有时钟脉冲的稳定电平值(即时钟信号无效时是高还是低)。每种模式由两个参数描述,称为时钟极CPOL(clock polarity)与时钟期CPHA(clock phase)。
Mode = Bit[CPOL]Bit[CPHA]
CPOL=0表示 SCK在空闲状态时为0;
CPOL=1表示 SCK在空闲状态时为1;
CPHA=0表示 在SCK第一个边沿时输入输出数据有效;
CPHA=1表示 在SCK第二个边沿时输入输出数据有效;
一般从器件的工作模式是固定的,主机要跟从机采用一样的工作模式,双方才能正常通信。如果有多个从设备,且从设备使用了不同的工作参数,那么主设备与不用的从设备通信时必须重新配置这些参数。
31 Mode0
Mode0时,CPOL=0,CPHA=0,SCK空闲状态为低电平,主机数据在每个上升沿被从机采样,数据输出同理。
32 Mode1
Mode1时,CPOL=0,CPHA=1,SCK空闲时为低电平,在SCK第二个边沿时数据有效,即SCK下降沿有效。
33 Mode2
Mode2时,CPOL=1,CPHA=0,SCK空闲时为高电平,在SCK第一个边沿时数据有效,即SCK下降沿有效。
34 Mode3
Mode3时,CPOL=1,CPHA=1,SCK空闲状态为高电平,主机数据在第二个边沿时有效,即每个上升沿被从机采样,数据输出同理。
四、SPI基本时序
SS为低电平时,表示对应的从机设备被使能,在每个SCK周期可以传输1Bit数据,采样时刻取决于器件支持的SPI mode,根据不同SPI器件的控制方法,在进行正式的数据读写 *** 作前,一般需要先写入控制字,然后是寄存器地址和数据。
如下是FM25V05铁电存储器采用SPI模式0的写时序,SS(CS)被拉低,主机数据在每个上升沿被从机采样,Opcode是控制字,控制字采样结束后开始采样数据。
如下是FM25V05铁电存储器采用SPI模式0的读时序:
需要注意的是在SS下降沿和SCLK第一个边沿,或SS上升沿和SCLK最后一个边沿之间要留有一定的延迟时间,一般是05个SCLK周期。
SPI协议简介
板卡内不同芯片间通讯最常用的三种串行协议:UART、I2C、SPI,之前写过串口协议及其FPGA实现,今天我们来介绍SPI协议,SPI是Serial Perripheral Interface的简称,是由Motorola公司推出的一种高速、全双工的总线协议。
与IIC类似,SPI也是采用主从方式工作,主机通常为FPGA、MCU或DSP等可编程控制器,从机通常为EPROM、Flash,AD/DA,音视频处理芯片等设备。一般由SCLK、CS、MOSI,MISO四根线组成,有的地方可能是:SCK、SS、SDI、SDO等名称,都是一样的含义,当有多个从机存在时,通过CS来选择要控制的从机设备。和标准SPI类似的协议,还有TI的SSP协议,区别主要在片选信号的时序上。
4线还是3线?
当我们谈到SPI时,默认情况下都是指标准的4线制Motorola SPI协议,即SCLK,MOSI,MISO和CS共4根数据线,标准4线制的好处是可以实现数据的全双工传输。当只有一个主机和一个从机设备时,只需要一个CS,多个从机需要多个CS,各数据线的介绍:
SCLK,时钟信号,时钟频率即SPI速率,和SPI模式有关
MOSI,主机输出,从机输入
MISO,主机输入,从机输出
CS,从机设备选择,低电平有效
3线制SPI,根据不同的应用场景,主要有以下2种类型:
只有3根线:SCLK,CS和DI或DO,适用于单工通讯,主机只发送或接收数据。
只有3根线:SCLK,SDIO和CS,这里的SDIO作为双向端口,适用于半双工通讯,比如ADI的多款ADC芯片都支持双向传输。在使用FPGA *** 作双向端口时,作为输入时要设置为高阻态z。
还有标准SPI协议的升级版,Dual SPI、Quad SPI和QPI等,这些协议不在本小节3线/4线制讨论的范围内,文章后面会提到。
4种工作模式
既然是进行数据传输,双方就要明确从机在什么时刻去采样主机发出的数据,主机在什么时刻去读取从机发来的数据。对于STM32等MCU自带的硬件SPI外设来说,可能没有那么重要,只需要配置一下模式就行了,但是对于使用使用GPIO模拟或者FPGA来实现SPI的时序,这一点是非常重要的,这就涉及到SPI标准协议的工作模式了,通过CPOL(Clock Polarity)时钟极性和CPHA(Clock Phase)时钟相位的不同组合,可以分为4种模式。
一般从机器件的工作模式是固定的,主机需要采用一样的工作模式,双方才能正常“交流”。
CPOL=0表示,SCK在空闲状态时为0
CPOL=1表示,SCK在空闲状态时为1
CPHA=0表示,在SCK第一个边沿时输入输出数据有效
CPHA=1表示,在SCK第二个边沿时输入输出数据有效
登录后复制
这四种模式中,应用最广泛的是模式0和3,大多数SPI器件都同时支持这两种工作模式,其实这些都不重要,具体采用什么模式,看你的器件手册就知道了。
以我最近工作中使用到的一款Cypress的铁电存储器FM25V05为例,在其官方DataSheet上介绍同时支持SPI Mode 0和Mode 3,
根据后面的时序图,可以得知SPI mode 0的读写时序,图中可以看出SCK空闲状态为低电平,主机数据在每个上升沿被从机采样,数据输出同理。
对于SPI mode3,SCK空闲状态为高电平,主机数据在每个上升沿被从机采样,数据输出同理。
模式1和模式2同理,模式1即CPOL=0,CPHA=1,SCK空闲为0,在SCK第二个边沿时数据有效,即SCK下降沿有效。
模式2即CPOL=1,CPHA=0,SCK空闲为1,在SCK第一个边沿时数据有效,即SCK下降沿有效。
在一些自带SPI硬件外设的MCU上,设置主机的SPI模式非常简单,只需要配置几个寄存器的值即可,而且是写了SCK高电平还是低电平,和第一个还是第二个边沿,不用去记忆等于0还是等于1。以STM32F103硬件SPI配置为例:
SPI_InitTypeDef SPI_InitStruct;
SPI_InitStructSPI_Mode =SPI_Mode_Master; //主
SPI_InitStructSPI_CPOL =SPI_CPOL_High; //SCK空闲时为高电平
SPI_InitStructSPI_CPHA =SPI_CPHA_1Edge;//SCK第一个边沿有效
SPI_Init(SPI2,&SPI_InitStruct);
登录后复制
而在FPGA中实现,需要严格根据时序来控制SCK和数据的输入输出。
多种传输速率
SCK的速率就是SPI的传输速率,SPI协议没有一个固定的速率,不像IIC标准模式100K,快速模式400K,高速模式34M,SPI的传输速率取决于器件本身支持多高的速率,器件手册里都有描述,以FM25V05为例:
不同电源电压情况下的最大SCK时钟频率:
SPI协议的基本时序
CS为低电平时,表示对应的从机设备被使能,在每个SCLK周期可以传输1Bit数据,采样时刻取决于器件支持的SPI mode,根据不同SPI器件的控制方法,在进行正式的数据读写 *** 作前,一般需要先写入控制字,然后是寄存器地址和数据。下图是FM25V05铁电存储器采用SPI模式0的写时序:
读时序:
如果要使用FPGA来实现SPI时序,在CS下降沿和SCLK第一个边沿,或CS上升沿和SCLK最后一个边沿之间要留有一定的延迟时间,一般是05个SCLK周期。
一些SPI从机设备支持菊花链连接模式,即节省GPIO,又不会占据太多布线面积,但并不是所有的SPI器件都支持菊花链模式。
控制时序:
SPI协议的升级版
传统标准的SPI协议,一个SCLK周期只能传输1Bit数据,能不能一个SCLK传输多个Bit数据呢?答案是可以的。Motorola公司在现有的标准4线SPI协议上,又开发出了多种SPI协议的升级版,通过增加数据线位数的方式,来提高数据传输的效率,目前很多Flash厂家都已经支持多种SPI协议。
以比较常用的一款SPI Flash ROM W25Q128FW为例,在其器件手册上写着除了标准的4线SPI模式,还支持Dual SPI,Quad SPI,QPI等,在这几种模式下,IO0/1/2/3这些IO作为双向端口,大大增加了数据读写的速率。
QSPI协议读写时序:
一些支持QSPI协议的Flash芯片型号:
FPGA实测SPI波形
FPGA实现UART、SPI、IIC等串行时序,最常用的实现方式就是状态机大法,将各个步骤分解为各个状态,然后根据不同的状态去控制输出或读取输入,细节方面需要考虑数据的对齐、建立和保持时间、一些异常情况时状态的跳转,不能进入死循环,或卡死在某一个状态。
下图的波形是使用Xilinx FPGA对一款铁电存储器FM25V05的驱动,采用标准4线SPI协议,和IIC接口的ERPOM *** 作方式类似:先写控制字,再写地址,再写数据或者读数据,SCK时钟频率40MHz,使用ChipScope抓取到的实际读写波形,在SCK低电平中间数据改变,在SCK上升沿左右数据要保持稳定。
SPI写时序,需要注意的是先写使能命令,然后重新产生CS信号,这一块卡了好久,在官方示例的C代码中才发现了问题所在,还是对手册上的时序理解不到位。
FM25V05写时序
SPI读时序,先写控制字,再写16位地址,然后读8位数据。
FM25V05读时序
SPI和IIC的对比
SPI是全双工,而IIC是半双工。
IIC支持多主机多从机模式,而SPI只能有一个主机。
从GPIO占用上来看,IIC占用更少的GPIO,更节省资源。
SPI的数据位宽更灵活,可以根据需要选择多位数据宽度。
SPI协议没有响应机制,主机无法得知从机是否接收到所发的数据,如果不采取一些方法的话可能会导致数据丢帧
这个只是宏定义,只是告诉你对这个变量(SPI_SDI) *** 作就是对PA7这个口 *** 作,并没有做一些GPIO口工作模式设置,具体用还需要具体配置,几个脚配置为复用,然后再对SPI的寄存器进行配置为你说的SPI作为主模式工作之类的,就是初始化了,如果你想具体看下,给我邮箱我发相关例子给你,寄存器和库的都有
一、 STM32的输入输出管脚有下面8种(4输入 2输出 2复用输出)可能的配置:\x0d\\x0d\ ① 浮空输入_IN_FLOATING\x0d\\x0d\ ② 带上拉输入_IPU \x0d\\x0d\ ③ 带下拉输入_IPD \x0d\\x0d\ ④ 模拟输入_AIN\x0d\\x0d\ ⑤ 开漏输出_OUT_OD \x0d\\x0d\ ⑥ 推挽输出_OUT_PP\x0d\\x0d\ ⑦ 复用功能的推挽输出_AF_PP\x0d\\x0d\ ⑧ 复用功能的开漏输出_AF_OD\x0d\\x0d\ 11 I/O口的输出模式下,有3种输出速度可选(2MHz、10MHz和50MHz),这个速度是指I/O口驱动电路的响应速度而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在I/O口 的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。\x0d\\x0d\ 输出速度又称输出驱动电路的响应速度,可理解为:输出驱动电路的带宽,即一个驱动电路可以不失真地通过信号的最大频率。\x0d\\x0d\ 如果一个信号的频率超过了驱动电路的响应速度,就有可能信号失真。如果信号频率为10MHz,而你配置了2MHz的带宽,则10MHz的方波很可能就变成了正弦波。就好比是公路的设计时速,汽车速度低于设计时速时,可以平稳地运行,如果超过设计时速就会颠簸,甚至翻车。\x0d\\x0d\ 关键是: GPIO的引脚速度跟应用相匹配,速度配置越高,噪声越大,功耗越大。\x0d\\x0d\ 带宽速度高的驱动器耗电大、噪声也大,带宽低的驱动器耗电小、噪声也小。使用合适的驱动器可以降低功耗和噪声。\x0d\ GPIO的引脚速度跟应用匹配(推荐10倍以上)。比如:\x0d\\x0d\ 111 对于串口,假如最大波特率只需1152k,那么用2M的GPIO的引脚速度就够了,既省电也噪声小。\x0d\\x0d\ 112 对于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO的引脚速度或许不够,这时可以选用10M的GPIO引脚速度。\x0d\\x0d\ 113 对于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引脚速度显然不够了,需要选用50M的GPIO的引脚速度。\x0d\\x0d\ 12 GPIO口设为输入时,输出驱动电路与端口是断开,所以输出速度配置无意义。\x0d\\x0d\ 13 在复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式。\x0d\\x0d\ 14 所有端口都有外部中断能力。为了使用外部中断线,端口必须配置成输入模式。\x0d\\x0d\ 15 GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。\x0d\\x0d\二、GPIO的翻转速度指:输入/输出寄存器的0 ,1 值反映到外部引脚(APB2上)高低电平的速度手册上指出GPIO最大翻转速度可达18MHz。通过简单的程序测试,用示波器观察到的翻转时间是综合的时间,包括取指令的时间、指令执行的时间、指令执行后信号传递到寄存器的时间(这其中可能经过很多环节,比如AHB、APB、总线仲裁等),最后才是信号从寄存器传输到引脚所经历的时间。如有上拉电阻,其阻值越大,RC延时越大,即逻辑电平转换的速度越慢,功耗越大。 \x0d\\x0d\三、在STM32中如何配置片内外设使用的IO端口\x0d\\x0d\ 首先,一个外设经过 ①配置输入的时钟和 ②初始化后即被激活(开启);③如果使用该外设的输入输出管脚,则需要配置相应的GPIO端口(否则该外设对应的输入输出管脚可以做普通GPIO管脚使用);④再对外设进行详细配置。\x0d\\x0d\ 对应到外设的输入输出功能有下述三种情况:\x0d\\x0d\ ① 外设对应的管脚为输出:需要根据外围电路的配置选择对应的管脚为复用功能的推挽输出或复用功能的开漏输出。\x0d\ ② 外设对应的管脚为输入:则根据外围电路的配置可以选择浮空输入、带上拉输入或带下拉输入。\x0d\ ③ ADC对应的管脚:配置管脚为模拟输入。\x0d\\x0d\ 如果把端口配置成复用输出功能,则引脚和输出寄存器断开,并和片上外设的输出信号连接。将管脚配置成复用输出功能后,如果外设没有被激活,那么它的输出将不确定。\x0d\\x0d\四、 通用IO端口(GPIO)初始化\x0d\\x0d\ 41 GPIO初始化\x0d\\x0d\ 411 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | B | C, ENABLE):使能APB2总线外设时钟;\x0d\\x0d\ 412 RCC_ APB2PeriphResetCmd (RCC_APB2Periph_GPIOA | B | C, DISABLE):释放GPIO复位。\x0d\\x0d\ 42 置各个PIN端口(模拟输入_AIN、输入浮空_IN_FLOATING、输入上拉_IPU、输入下拉_IPD、开漏输出_OUT_OD、推挽式输出_OUT_PP、推挽式复用输出_AF_PP、开漏复用输出_AF_OD)。\x0d\\x0d\ 43GPIO初始化完成。\x0d\\x0d\五、 的GPIO *** 作函数\x0d\\x0d\uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef GPIOx, uint16_t GPIO_Pin);//读GPIO某一位的输入\x0d\\x0d\uint16_t GPIO_ReadInputData(GPIO_TypeDef GPIOx);//读GPIO的输入\x0d\\x0d\uint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef GPIOx, uint16_t GPIO_Pin);//读GPIO某一位的输出\x0d\\x0d\uint16_t GPIO_ReadOutputData(GPIO_TypeDef GPIOx);//读GPIO的输出\x0d\\x0d\void GPIO_SetBits(GPIO_TypeDef GPIOx, uint16_t GPIO_Pin);//将GPIO的某个位置位\x0d\\x0d\void GPIO_ResetBits(GPIO_TypeDef GPIOx, uint16_t GPIO_Pin);//将GPIO的某个位复位\x0d\\x0d\void GPIO_WriteBit(GPIO_TypeDef GPIOx, uint16_t GPIO_Pin, BitAction BitVal);//写GPIO的某个位\x0d\\x0d\void GPIO_Write(GPIO_TypeDef GPIOx, uint16_t PortVal);//写GPIO\x0d\\x0d\ 六、管脚的复用功能 重映射\x0d\\x0d\1、复用功能:内置外设是与I/O口共用引出管脚(不同的功能对应同一管脚)\x0d\\x0d\STM32 所有内置外设的外部引脚都是与标准GPIO引脚复用的,如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。\x0d\\x0d\2、重映射功能:复用功能的引出脚可以通过重映射,从不同的I/O管脚引出,即复用功 能的引出脚位是可通过程序改变到其他的引脚上!\x0d\\x0d\直接好处:PCB电路板的设计人员可以在需要的情况下,不必把某些信号在板上绕一大圈完成联接,方便了PCB的设计同时潜在地减少了信号的交叉干扰。\x0d\\x0d\如:USART1: 0: 没有重映像(TX/PA9,RX/PA10); 1: 重映像(TX/PB6,RX/PB7)。\x0d\\x0d\(参考AFIO_MAPR寄存器介绍)[0,1为一寄存器的bit值]\x0d\\x0d\注 下述复用功能的引出脚具有重映射功能:\x0d\\x0d\ - 晶体振荡器的引脚在不接晶体时,可以作为普通I/O口\x0d\\x0d\ - CAN模块; - JTAG调试接口;- 大部分定时器的引出接口; - 大部分USART引出接口\x0d\\x0d\ - I2C1的引出接口; - SPI1的引出接口;\x0d\\x0d\举例:对于STM32F103VBT6,47引脚为PB10,它的复用功能是I2C2_SCL和 USART3_TX,表示在上电之后它的默认功能为PB10,而I2C2的SCL和USART3的TX为它的复用功能;另外在TIM2的引脚重映射后,TIM2_CH3也成为这个引脚的复用功能。\x0d\\x0d\(1)要使用STM32F103VBT6的47、48脚的USART3功能,则需要配置47脚为复用推挽输出或复用开漏输出,配置48脚为某种输入模式,同时使能USART3并保持I2C2的非使能状态。\x0d\\x0d\(2)使用STM32F103VBT6的47脚作为TIM2_CH3,则需要对TIM2进行重映射,然后再按复用功能的方式配置对应引脚。
以上就是关于linux下的SPI使用方法是怎样的全部的内容,包括:linux下的SPI使用方法是怎样的、简述GPIO10,UART0,UART1,I2C和SPI接口的用途他们之间的优缺点是什么、spi模式0可以通信模式3不能通信的原因等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)