怎么通过MATLAB使用遗传算法实现pid参数整定

怎么通过MATLAB使用遗传算法实现pid参数整定,第1张

我的毕设只用把PID和模糊PID相比较

常规PID,用Matlab里的Simulink模块仿真,建立你要做的动力学模型的传函或者状态空间。PID参数调节可用临界比度法。

模糊PID就麻烦了,打开Matlab中FIS模块,一般都用二阶模糊?输入E,EC的隶属函数,一般为高斯,和输出模糊Kp,Ki,Kd,一般为三角。还要整定模糊规则,再加载到Simulink里。调节模糊因子Gu,Ge,Gec,设置模糊PID的参数。

总之,你这个问题在白度知道里很难说清楚。

这个问题也困扰了我好久,终于解决了。给你个gam程序,新建m文件复制进去,再运行程序试试。

%gam

function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,

termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)

% GA run a genetic algorithm

% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,

% termFN,termOps,selectFN,selectOps,

% xOverFNs,xOverOps,mutFNs,mutOps)

%

% Output Arguments:

% x - the best solution found during the course of the run

% endPop - the final population

% bPop - a trace of the best population

% traceInfo - a matrix of best and means of the ga for each generation

%

% Input Arguments:

% bounds - a matrix of upper and lower bounds on the variables

% evalFN - the name of the evaluation m function

% evalOps - options to pass to the evaluation function ([NULL])

% startPop - a matrix of solutions that can be initialized

% from initializem

% opts - [epsilon prob_ops display] change required to consider two

% solutions different, prob_ops 0 if you want to apply the

% genetic operators probabilisticly to each solution, 1 if

% you are supplying a deterministic number of operator

% applications and display is 1 to output progress 0 for

% quiet ([1e-6 1 0])

% termFN - name of the m termination function (['maxGenTerm'])

% termOps - options string to be passed to the termination function

% ([100])

% selectFN - name of the m selection function (['normGeomSelect'])

% selectOpts - options string to be passed to select after

% select(pop,#,opts) ([008])

% xOverFNS - a string containing blank seperated names of Xoverm

% files (['arithXover heuristicXover simpleXover'])

% xOverOps - A matrix of options to pass to Xoverm files with the

% first column being the number of that xOver to perform

% similiarly for mutation ([2 0;2 3;2 0])

% mutFNs - a string containing blank seperated names of mutationm

% files (['boundaryMutation multiNonUnifMutation

% nonUnifMutation unifMutation'])

% mutOps - A matrix of options to pass to Xoverm files with the

% first column being the number of that xOver to perform

% similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 0])

% Binary and Real-Valued Simulation Evolution for Matlab

% Copyright (C) 1996 CR Houck, JA Joines, MG Kay

%

% CR Houck, JJoines, and MKay A genetic algorithm for function

% optimization: A Matlab implementation ACM Transactions on Mathmatical

% Software, Submitted 1996

%

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 1, or (at your option)

% any later version

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE See the

% GNU General Public License for more details A copy of the GNU

% General Public License can be obtained from the

% Free Software Foundation, Inc, 675 Mass Ave, Cambridge, MA 02139, USA

%%$Log: gam,v $

%Revision 110 1996/02/02 15:03:00 jjoine

% Fixed the ordering of imput arguments in the comments to match

% the actual order in the ga function

%

%Revision 19 1995/08/28 20:01:07 chouck

% Updated initialization parameters, updated mutation parameters to reflect

% b being the third option to the nonuniform mutations

%

%Revision 18 1995/08/10 12:59:49 jjoine

%Started Logfile to keep track of revisions

%

n=nargin;

if n<2 | n==6 | n==10 | n==12

disp('Insufficient arguements')

end

if n<3 %Default evalation opts

evalOps=[];

end

if n<5

opts = [1e-6 1 0];

end

if isempty(opts)

opts = [1e-6 1 0];

end

if any(evalFN<48) %Not using a m file

if opts(2)==1 %Float ga

e1str=['x=c1; c1(xZomeLength)=', evalFN ';'];

e2str=['x=c2; c2(xZomeLength)=', evalFN ';'];

else %Binary ga

e1str=['x=b2f(endPop(j,:),bounds,bits); endPop(j,xZomeLength)=',

evalFN ';'];

end

else %Are using a m file

if opts(2)==1 %Float ga

e1str=['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];

e2str=['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];

else %Binary ga

e1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' evalFN

'(x,[gen evalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];'];

end

end

if n<6 %Default termination information

termOps=[100];

termFN='maxGenTerm';

end

if n<12 %Default muatation information

if opts(2)==1 %Float GA

mutFNs=['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'];

mutOps=[4 0 0;6 termOps(1) 3;4 termOps(1) 3;4 0 0];

else %Binary GA

mutFNs=['binaryMutation'];

mutOps=[005];

end

end

if n<10 %Default crossover information

if opts(2)==1 %Float GA

xOverFNs=['arithXover heuristicXover simpleXover'];

xOverOps=[2 0;2 3;2 0];

else %Binary GA

xOverFNs=['simpleXover'];

xOverOps=[06];

end

end

if n<9 %Default select opts only ie roullete wheel

selectOps=[];

end

if n<8 %Default select info

selectFN=['normGeomSelect'];

selectOps=[008];

end

if n<6 %Default termination information

termOps=[100];

termFN='maxGenTerm';

end

if n<4 %No starting population passed given

startPop=[];

end

if isempty(startPop) %Generate a population at random

%startPop=zeros(80,size(bounds,1)+1);

startPop=initializega(80,bounds,evalFN,evalOps,opts(1:2));

end

if opts(2)==0 %binary

bits=calcbits(bounds,opts(1));

end

xOverFNs=parse(xOverFNs);

mutFNs=parse(mutFNs);

xZomeLength = size(startPop,2); %Length of the xzome=numVars+fittness

numVar = xZomeLength-1; %Number of variables

popSize = size(startPop,1); %Number of individuals in the pop

endPop = zeros(popSize,xZomeLength); %A secondary population matrix

c1 = zeros(1,xZomeLength); %An individual

c2 = zeros(1,xZomeLength); %An individual

numXOvers = size(xOverFNs,1); %Number of Crossover operators

numMuts = size(mutFNs,1); %Number of Mutation operators

epsilon = opts(1); %Threshold for two fittness to differ

oval = max(startPop(:,xZomeLength)); %Best value in start pop

bFoundIn = 1; %Number of times best has changed

done = 0; %Done with simulated evolution

gen = 1; %Current Generation Number

collectTrace = (nargout>3); %Should we collect info every gen

floatGA = opts(2)==1; %Probabilistic application of ops

display = opts(3); %Display progress

while(~done)

%Elitist Model

[bval,bindx] = max(startPop(:,xZomeLength)); %Best of current pop

best = startPop(bindx,:);

if collectTrace

traceInfo(gen,1)=gen; %current generation

traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness

traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness

traceInfo(gen,4)=std(startPop(:,xZomeLength));

end

if ( (abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol

if display

fprintf(1,'\n%d %f\n',gen,bval); %Update the display

end

if floatGA

bPop(bFoundIn,:)=[gen startPop(bindx,:)]; %Update bPop Matrix

else

bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)

startPop(bindx,xZomeLength)];

end

bFoundIn=bFoundIn+1; %Update number of changes

oval=bval; %Update the best val

else

if display

fprintf(1,'%d ',gen); %Otherwise just update num gen

end

end

endPop = feval(selectFN,startPop,[gen selectOps]); %Select

if floatGA %Running with the model where the parameters are numbers of ops

for i=1:numXOvers,

for j=1:xOverOps(i,1),

a = round(rand(popSize-1)+1); %Pick a parent

b = round(rand(popSize-1)+1); %Pick another parent

xN=deblank(xOverFNs(i,:)); %Get the name of crossover function

[c1 c2] = feval(xN,endPop(a,:),endPop(b,:),bounds,[gen xOverOps(i,:)]);

if c1(1:numVar)==endPop(a,(1:numVar)) %Make sure we created a new

c1(xZomeLength)=endPop(a,xZomeLength); %solution before evaluating

elseif c1(1:numVar)==endPop(b,(1:numVar))

c1(xZomeLength)=endPop(b,xZomeLength);

else

%[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]);

eval(e1str);

end

if c2(1:numVar)==endPop(a,(1:numVar))

c2(xZomeLength)=endPop(a,xZomeLength);

elseif c2(1:numVar)==endPop(b,(1:numVar))

c2(xZomeLength)=endPop(b,xZomeLength);

else

%[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps]);

eval(e2str);

end

endPop(a,:)=c1;

endPop(b,:)=c2;

end

end

for i=1:numMuts,

for j=1:mutOps(i,1),

a = round(rand(popSize-1)+1);

c1 = feval(deblank(mutFNs(i,:)),endPop(a,:),bounds,[gen mutOps(i,:)]);

if c1(1:numVar)==endPop(a,(1:numVar))

c1(xZomeLength)=endPop(a,xZomeLength);

else

%[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]);

eval(e1str);

end

endPop(a,:)=c1;

end

end

else %We are running a probabilistic model of genetic operators

for i=1:numXOvers,

xN=deblank(xOverFNs(i,:)); %Get the name of crossover function

cp=find(rand(popSize,1)<xOverOps(i,1)==1);

if rem(size(cp,1),2) cp=cp(1:(size(cp,1)-1)); end

cp=reshape(cp,size(cp,1)/2,2);

for j=1:size(cp,1)

a=cp(j,1); b=cp(j,2);

[endPop(a,:) endPop(b,:)] = feval(xN,endPop(a,:),endPop(b,:),

bounds,[gen xOverOps(i,:)]);

end

end

for i=1:numMuts

mN=deblank(mutFNs(i,:));

for j=1:popSize

endPop(j,:) = feval(mN,endPop(j,:),bounds,[gen mutOps(i,:)]);

eval(e1str);

end

end

end

gen=gen+1;

done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done

startPop=endPop; %Swap the populations

[bval,bindx] = min(startPop(:,xZomeLength)); %Keep the best solution

startPop(bindx,:) = best; %replace it with the worst

end

[bval,bindx] = max(startPop(:,xZomeLength));

if display

fprintf(1,'\n%d %f\n',gen,bval);

end

x=startPop(bindx,:);

if opts(2)==0 %binary

x=b2f(x,bounds,bits);

bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)

startPop(bindx,xZomeLength)];

else

bPop(bFoundIn,:)=[gen startPop(bindx,:)];

end

if collectTrace

traceInfo(gen,1)=gen; %current generation

traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness

traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness

end

(1)关于fitness value,你要自己定义一个函数,如你所说从25个x变量经过一系列运算得到y值 可以其作为fitness value

(2)由于x的取值是离散的 染色体不一定要是二进制 最简单的做法是一个5进制的长为25的串。

% 主程序

%遗传算法主程序

%Name:genmainm

%author:杨幂

clear

clf

%%初始化

popsize=50; %群体大小

chromlength=30; %字符串长度(个体长度)

pc=06; %交叉概率

pm=01; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体

%%开始迭代

for i=1:20 %20为迭代次数

[objvalue]=calobjvalue(pop); %计算目标函数

fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度

[newpop]=selection(pop,fitvalue); %复制

[newpop]=crossover(pop,pc); %交叉

[newpop]=mutation(pop,pm); %变异

[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值

y(i)=max(bestfit);%储存最优个体适应值

n(i)=i;

pop5=bestindividual;%储存最优个体

%解码

x1(i)=decodechrom(pop5,1,chromlength/2)2/32767;

x2(i)=10+decodechrom(pop5,chromlength/2+1,chromlength/2)10/32767;

pop=newpop;%将新产生的种群作为当前种群

end

%%绘图

figure(1)%最优点变化趋势图

i=1:20;

plot(y(i),'-r')

xlabel('迭代次数');

ylabel('最优个体适应值');

title('最优点变化趋势');

legend('最优点');

grid on

figure(2)%最优点分布图

[X1,X2]=meshgrid(0:01:2,10:01:20);

Z=X1^2+X2^2;

mesh(X1,X2,Z);

xlabel('自变量x1'),ylabel('自变量x2'),zlabel('函数值f(x1,x2)');

hold on

plot3(x1,x2,y,'ro','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSize',5)

title('最优点分布');

legend('最优点');

hold off

[z index]=max(y); %计算最大值及其位置

x5=[x1(index),x2(index)]%计算最大值对应的x值

z

把下面的(1)-(7)依次存成相应的m文件,在(7)的m文件下运行就可以了

(1) 适应度函数fitm

function fitness=fit(len,m,maxlen,minlen)

fitness=len;

for i=1:length(len)

fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+00001))^m;

end

(2)个体距离计算函数 mylengthm

function len=myLength(D,p)

[N,NN]=size(D);

len=D(p(1,N),p(1,1));

for i=1:(N-1)

len=len+D(p(1,i),p(1,i+1));

end

end

(3)交叉 *** 作函数 crossm

function [A,B]=cross(A,B)

L=length(A);

if L<10

W=L;

elseif ((L/10)-floor(L/10))>=rand&&L>10

W=ceil(L/10)+8;

else

W=floor(L/10)+8;

end

p=unidrnd(L-W+1);

fprintf('p=%d ',p);

for i=1:W

x=find(A==B(1,p+i-1));

y=find(B==A(1,p+i-1));

[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));

[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));

end

end

(4)对调函数 exchangem

function [x,y]=exchange(x,y)

temp=x;

x=y;

y=temp;

end

(5)变异函数 Mutationm

function a=Mutation(A)

index1=0;index2=0;

nnper=randperm(size(A,2));

index1=nnper(1);

index2=nnper(2);

%fprintf('index1=%d ',index1);

%fprintf('index2=%d ',index2);

temp=0;

temp=A(index1);

A(index1)=A(index2);

A(index2)=temp;

a=A;

end

(6)连点画图函数 plot_routem

function plot_route(a,R)

scatter(a(:,1),a(:,2),'rx');

hold on;

plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);

hold on;

for i=2:length(R)

x0=a(R(i-1),1);

y0=a(R(i-1),2);

x1=a(R(i),1);

y1=a(R(i),2);

xx=[x0,x1];

yy=[y0,y1];

plot(xx,yy);

hold on;

end

end

(7)主函数

clear;

clc;

%%%%%%%%%%%%%%%输入参数%%%%%%%%

N=50; %%城市的个数

M=100; %%种群的个数

C=100; %%迭代次数

C_old=C;

m=2; %%适应值归一化淘汰加速指数

Pc=04; %%交叉概率

Pmutation=02; %%变异概率

%%生成城市的坐标

pos=randn(N,2);

%%生成城市之间距离矩阵

D=zeros(N,N);

for i=1:N

for j=i+1:N

dis=(pos(i,1)-pos(j,1))^2+(pos(i,2)-pos(j,2))^2;

D(i,j)=dis^(05);

D(j,i)=D(i,j);

end

end

%%如果城市之间的距离矩阵已知,可以在下面赋值给D,否则就随机生成

%%生成初始群体

popm=zeros(M,N);

for i=1:M

popm(i,:)=randperm(N);

end

%%随机选择一个种群

R=popm(1,:);

figure(1);

scatter(pos(:,1),pos(:,2),'rx');

axis([-3 3 -3 3]);

figure(2);

plot_route(pos,R); %%画出种群各城市之间的连线

axis([-3 3 -3 3]);

%%初始化种群及其适应函数

fitness=zeros(M,1);

len=zeros(M,1);

for i=1:M

len(i,1)=myLength(D,popm(i,:));

end

maxlen=max(len);

minlen=min(len);

fitness=fit(len,m,maxlen,minlen);

rr=find(len==minlen);

R=popm(rr(1,1),:);

for i=1:N

fprintf('%d ',R(i));

end

fprintf('\n');

fitness=fitness/sum(fitness);

distance_min=zeros(C+1,1); %%各次迭代的最小的种群的距离

while C>=0

fprintf('迭代第%d次\n',C);

%%选择 *** 作

nn=0;

for i=1:size(popm,1)

len_1(i,1)=myLength(D,popm(i,:));

jc=rand03;

for j=1:size(popm,1)

if fitness(j,1)>=jc

nn=nn+1;

popm_sel(nn,:)=popm(j,:);

break;

end

end

end

%%每次选择都保存最优的种群

popm_sel=popm_sel(1:nn,:);

[len_m len_index]=min(len_1);

popm_sel=[popm_sel;popm(len_index,:)];

%%交叉 *** 作

nnper=randperm(nn);

A=popm_sel(nnper(1),:);

B=popm_sel(nnper(2),:);

for i=1:nnPc

[A,B]=cross(A,B);

popm_sel(nnper(1),:)=A;

popm_sel(nnper(2),:)=B;

end

%%变异 *** 作

for i=1:nn

pick=rand;

while pick==0

pick=rand;

end

if pick<=Pmutation

popm_sel(i,:)=Mutation(popm_sel(i,:));

end

end

%%求适应度函数

NN=size(popm_sel,1);

len=zeros(NN,1);

for i=1:NN

len(i,1)=myLength(D,popm_sel(i,:));

end

maxlen=max(len);

minlen=min(len);

distance_min(C+1,1)=minlen;

fitness=fit(len,m,maxlen,minlen);

rr=find(len==minlen);

fprintf('minlen=%d\n',minlen);

R=popm_sel(rr(1,1),:);

for i=1:N

fprintf('%d ',R(i));

end

fprintf('\n');

popm=[];

popm=popm_sel;

C=C-1;

%pause(1);

end

figure(3)

plot_route(pos,R);

axis([-3 3 -3 3]);

以上就是关于怎么通过MATLAB使用遗传算法实现pid参数整定全部的内容,包括:怎么通过MATLAB使用遗传算法实现pid参数整定、运行遗基于遗传算法的BP神经网络MATLAB代码程序时总是出错!!!、遗传算法matlab程序最后目标函数值与自己的初始点所求得的值偏差太大等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10219524.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存