苏州科达官网显示,苏州科达在接受机构调研时表示,公司自研的服务器包含高性能计算服务器、高密度服务器和GPU服务器等,产品采用国产化处理器、支持国产 *** 作系统,主要用于构建公司音视频解决方案中所需要的云计算平台。
科达自主研发的智能分析GPU服务器提供了高密度高性能的GPU计算能力,在标准4U服务器架构上,可提供不少于12套高性能GPU分析处理单元。选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此,十次方平台建议您选择GPU型号要先看业务需求。
当GPU型号选定后,再考虑用什么样GPU的服务器。这时我们需要考虑以下几种情况:
第一、 在边缘服务器上需要根据量来选择T4或者P4等相应的服务器,同时也要考虑服务器的使用场景,比如火车站卡口、机场卡口或者公安卡口等;在中心端做Inference时可能需要V100的服务器,需要考虑吞吐量以及使用场景、数量等。
第二、 需要考虑客户本身使用人群和IT运维能力,对于BAT这类大公司来说,他们自己的运营能力比较强,这时会选择通用的PCI-e服务器;而对于一些IT运维能力不那么强的客户,他们更关注数字以及数据标注等,我们称这类人为数据科学家,选择GPU服务器的标准也会有所不同。
第三、 需要考虑配套软件和服务的价值。
第四、要考虑整体GPU集群系统的成熟程度以及工程效率,比如像DGX这种GPU一体化的超级计算机,它有非常成熟的 *** 作系统驱动Docker到其他部分都是固定且优化过的,这时效率就比较高。题主是否想询问“gpu云服务器怎么使用”?
1、选择一个合适的GPU云服务器提供商,如阿里云、腾讯云等。登录云服务器控制台,在控制台中创建一个GPU云服务器实例。需要选择合适的配置,包括CPU、GPU、内存、存储等。
2、在实例创建完成后,登录到服务器系统中,安装相应的GPU驱动和运行所需的软件和工具。
3、开始使用GPU云服务器进行计算、模型训练等任务。可以使用SSH连接到服务器,或通过远程桌面等方式进行 *** 作。
GPU服务器和普通服务器的区别在于GPU服务器具有GPU(图形处理器)加速,而普通服务器通常只有CPU(中央处理器)。以下是几个区分GPU服务器和普通服务器的因素:
硬件配置:GPU服务器通常具有多个高端GPU卡,而普通服务器则通常只有一个或几个CPU。此外,GPU服务器通常具有更高的内存容量和更快的存储设备,以便处理和存储大量数据。
应用场景:GPU服务器通常用于计算密集型的任务,例如深度学习、机器学习、数据挖掘和科学计算等需要大量矩阵运算和并行计算的应用。而普通服务器则更适用于处理数据传输、存储和其他一般性任务。
性能:由于GPU服务器具有GPU加速,因此其性能通常比普通服务器更高,尤其是在处理大量数据和进行大规模计算时。GPU服务器可以利用GPU的并行计算能力,加速许多复杂的计算任务。
价格:由于GPU服务器的配置和性能比普通服务器更高,因此其价格也通常更高。GPU服务器可能需要更多的电力和散热,因此它们也可能更昂贵。因此,在购买GPU服务器之前,需要考虑你的预算和实际需求。
总的来说,GPU服务器和普通服务器有很多不同之处,主要是在硬件配置、应用场景、性能和价格等方面。你需要根据自己的需求和预算,选择最适合的服务器类型。
高性能计算(HPC) 指通常使用很多处理器(作为单个机器的一部分)或者某一集群中组织的几台计算机(作为单个计 算资源 *** 作)的计算系统和环境。有许多类型的HPC 系统,其范围从标准计算机的大型集群,到高度专用的硬件。大多数基于集群的HPC系统使用高性能网络互连,比如那些来自 InfiniBand 或 Myrinet 的网络互连。基本的网络拓扑和组织可以使用一个简单的总线拓扑,在性能很高的环境中,网状网络系统在主机之间提供较短的潜伏期,所以可改善总体网络性能和传输速率。基于GPU的通用计算已成为近几年人们关注的一个研究热点。将GPU用于通用计算的主要目的是为了加速计算,加速的动力来自GPU在高性能计算方面所具有的优势。
(1)高效的并行性。
通过GPU多条绘制流水线的并行计算来体现的。百度下在目前主流的GPU中,多条流水线可以在单一控制部件的集中控制下运行,也可以独立运行。GPU的顶点处理流水线使用MIMD方式控制,片段处理流水线使用SIMD结构。相对于并行机而言,GPU提供的并行性在十分廉价的基础上,为很多适合于在GPU上进行处理的应用提供了一个很好的并行方案。
(2)高密集的运算。
GPU通常具有128位或256位的内存位宽,因此GPU在计算密集型应用方面具有很好的性能。
(3)超长图形流水线。
GPU超长图形流水线的设计以吞吐量的最大化为目标,因此GPU作为数据流并行处理机,在对大规模的数据流并行处理方面具有明显的优势。
CPU中的大部分晶体管主要用于构建控制电路(如分支预测等)和Cache,只有少部分的晶体管来完成实际的运算工作。GPU与CPU的设计目标不同,其控制电路相对简单,而且对Cache的需求较小,所以大部分晶体管可以组成各类专用电路和多条流水线,使GPU的计算速度有了突破性的飞跃,拥有惊人的处理浮点运算的能力。
正是由于GPU在并行处理和计算密集型问题求解等方面所具有的诸多优势,GPU已成为目前普通PC机所拥有的强大、高效的计算资源。从系统架构上看,GPU是针对向量计算进行了优化的高度并行的数据流处理机。这种以数据流作为处理单元的处理机,在对数据流的处理上可以获得很高的效率。
蓝海大脑高性能计算GPU服务器兼容的部件会依据产品兼容性的改善和技术演进存在增加或正常的替换,由3个节点以上构成,也可1-2节点。为保证性能,SAS HDD的数量应为SSD的2倍或更多,工作温度、噪音、功率等适应性依据配置。整机尺寸可依配置做适应性调整。更好地为生命科学、医药研发、元宇宙、大数据、地质遥感、高性能计算等行业服务。
型号 蓝海大脑高性能计算服务器
英特尔
处理器 Intel Xeon Gold 6240R 24C/48T,24GHz,3575MB,DDR4 2933,Turbo,HT,165W1TB
Intel Xeon Gold 6258R 28C/56T,27GHz,3855MB,DDR4 2933,Turbo,HT,205W1TB
Intel Xeon W-3265 24C/48T 27GHz 33MB 205W DDR4 2933 1TB
Intel Xeon Platinum 8280 28C/56T 27GHz 385MB,DDR4 2933,Turbo,HT 205W 1TB
Intel Xeon Platinum 9242 48C/96T 38GHz 715MB L2,DDR4 3200,HT 350W 1TB
Intel Xeon Platinum 9282 56C/112T 38GHz 715MB L2,DDR4 3200,HT 400W 1TB
AMD
处理器 AMD锐龙Threadripper Pro 3945WX 40GHz/12核/64M/3200/280W
AMD锐龙Threadripper Pro 3955WX 39GHz/16核/64M/3200/280W
AMD锐龙Threadripper Pro 3975WX 35GHz/32核/128M/3200/280W
AMD锐龙Threadripper Pro 3995WX 27GHz/64核/256M/3200/280W
AMD锐龙Threadripper Pro 5945WX 41G 12核/64M/3200/280W
AMD锐龙Threadripper Pro 5955WX 40G 16核/64M/3200/280W
AMD锐龙Threadripper Pro 5965WX 38G 24核/128M/3200/280W
AMD锐龙Threadripper Pro 5975WX 36G 32核/128M/3200/280W
AMD锐龙Threadripper Pro 5995WX 27G 64核/256M/3200/280W
显卡 NVIDIA A100×4, NVIDIA GV100×4
NVIDIA RTX 3090×4, NVIDIA RTX 3090TI×4,
NVIDIA RTX 8000×4, NVIDIA RTX A6000×4,
NVIDIA Quadro P2000×4,NVIDIA Quadro P2200×4
硬盘 NVMe2 SSD: 512GB,1TB; M2 PCIe - Solid State Drive (SSD),
SATA SSD: 1024TB, 2048TB, 5120TB
SAS:10000rpm&15000rpm,600GB,12TGB,18TB
HDD : 1TB,2TB,4TB,6TB,10TB
外形规格 立式机箱
210尺寸mm(高深宽) : 726 x 616 x 266
210A尺寸mm(高深宽) : 666 x 626 x 290
210B尺寸mm(高深宽) : 697 x 692 x 306
声卡:71通道田声卡
机柜安装 : 前置机柜面板或倒轨(可选)
电源 功率 : 1300W×2; 2000W×1
软件环境 可预装 CUDA、Driver、Cudnn、NCCL、TensorRT、Python、Opencv 等底层加速库、选装 Tensorflow、Caffe、Pytorch、MXnet 等深度学习框架。
前置接口 USB32 GEN2 Type-C×4
指承灯电和硬盘LED
灵动扩展区 : 29合1读卡器,eSATA,1394,PCIe接口(可选)
读卡器 : 9合1SD读卡器(可选)
模拟音频 : 立体声、麦克风
后置接口 PS2接口 : 可选
串行接口 : 可选
USB32 GEN2 Type-C×2
网络接口 : 双万兆 (RJ45)
IEEE 1394 : 扩展卡口
模拟音频 : 集成声卡 3口
连接线 专用屏蔽电缆(信号电缆和电源电缆)
资料袋 使用手册、光盘1张、机械键盘、鼠标、装箱单、产品合格证等{变量12}
深度学习是机器学习的分支,是一种以人工神经网络为架构,对数据进行表征学习的算法。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理等多个领域都取得了卓越的成果,可见其重要性
熟悉深度学习的人都知道,深度学习是需要训练的,所谓的训练就是在成千上万个变量中寻找最佳值的计算。这需要通过不断的尝试识别,而最终获得的数值并非是人工确定的数字,而是一种常态的公式。通过这种像素级的学习,不断总结规律,计算机就可以实现像人一样思考。因而,更擅长并行计算和高带宽的GPU,则成了大家关注的重点。
很多人认为深度学习GPU服务器配置跟普通服务器有些不一样,就像很多人认为做设计的机器一定很贵一样。其实只要显卡或者CPU满足深度学习的应用程序就可以进行深度学习。由于现在CPU的核心数量和架构相对于深度学习来说效率会比GPU低很多,所以大部分深度学习的服务器都是通过高端显卡来运算的。
这里谈谈关于深度学习GPU服务器如何选择,深度学习服务器的一些选购原则和建议:
1、电源:品质有保障,功率要足够,有30~40%冗余
稳定、稳定、还是稳定。一个好的电源能够保证主机再长时间运行不宕机和重启。可以想象一下,计算过程中突然重启,那么又要重来,除了降低效率,还影响心情。有些电源低负载使用的时候可能不出问题,一旦高负载运行的时候就容易出问题。选择电源的时候一定要选择功率有冗余品质过硬,不要功率刚刚好超出一点。
2、显卡:目前主流RTX3090,最新RTX4090也将上市
显卡在深度学习中起到很重要的作用,也是预算的一大头。预算有限,可以选择RTX3080 /RTX3090/RTX4090(上月刚发布,本月12日上市)。预算充足,可以选择专业深度学习卡Titan RTX/Tesla V100 /A6000/A100/H100(处于断供中)等等。
3、CPU:两家独大,在这要讲的是PC级和服务器级别处理器的定位
Intel的处理器至强Xeon、酷睿Core、赛扬Celeron、奔腾Pentium和凌动Atom5个系列,而至强是用于服务器端,目前市场上最常见的是酷睿。当下是第三代Xeon Scalable系列处理器,分为Platinum白金、Gold金牌、 Silver 银牌。
AMD处理器分为锐龙Ryzen、锐龙Ryzen Pro、锐龙线程撕裂者Ryzen Threadripper、霄龙EPYC,其中霄龙是服务器端的CPU,最常见的是锐龙。当下是第三代 EPYC(霄龙)处理器 ,AMD 第三代 EPYC 7003 系列最高 64核。
选择单路还是双路也是看软件,纯粹的使用GPU运算,其实CPU没有多大负载。考虑到更多的用途,当然CPU不能太差。主流的高性能多核多线程CPU即可。
4、内存:单根16G/32G/64G 可选,服务器级别内存有ECC功能,PC级内存没有,非常重要
内存32G起步,内存都是可以扩展的,所以够用就好,不够以后可以再加,买多了是浪费。
5、硬盘:固态硬盘和机械硬盘,通常系统盘追求速度用固态硬盘,数据盘强调存储量用机械盘
固态选择大品牌企业级,Nvme或者SATA协议区别不大,杂牌固态就不要考虑了,用着用着突然掉盘就不好了。
6、机箱平台:服务器级别建议选择超微主板平台,稳定性、可靠性是第一要求
预留足够的空间方便升级,比如现在使用单显卡,未来可能要加显卡等等;结构要合理,合理的空间更利于空气流动。最好是加几个散热效果好的机箱风扇辅助散热。温度也是导致不稳定的一个因素。
7、软硬件支持/解决方案:要有
应用方向:深度学习、量化计算、分子动力学、生物信息学、雷达信号处理、地震数据处理、光学自适应、转码解码、医学成像、图像处理、密码破解、数值分析、计算流体力学、计算机辅助设计等多个科研领域。
软件: Caffe, TensorFlow, Abinit, Amber, Gromacs, Lammps, NAMD, VMD, Materials Studio, Wien2K, Gaussian, Vasp, CFX, OpenFOAM, Abaqus, Ansys, LS-DYNA, Maple, Matlab, Blast, FFTW, Nastran等软件的安装、调试、优化、培训、维护等技术支持和服务。
————————————————
版权声明:本文为CSDN博主「Ai17316391579」的原创文章,遵循CC 40 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)