Es Cluster 配置详解

Es Cluster 配置详解,第1张

elasticsearchyml 服务配置文件

参数:

配置es的集群名称,默认是elasticsearch,es会自动发现在同一网段下的es,如果在同一网段下有多个集群,就可以用这个属性来区分不同的集群。

设置默认索引分片个数,默认为5片。Since elasticsearch 5x index level settings can NOT be set on the nodes configuration like the elasticsearchyaml, in system properties or command line argumentsIn order to upgrade all indices the settings must be updated via the /${index}/_settings API Unless all settings are dynamic all indices must be closed

in order to apply the upgradeIndices created in the future should use index templates

to set default values

Please ensure all required values are updated on all indices by executing:

curl -XPUT ' >

filesystem类似于我们在mysql上建立一层redis缓存;

es的搜索引擎严重依赖于底层的filesystem cache,如果给filesystem cache更多的内存,尽量让内存可以容纳所有的indx segment file索引数据文件,那么你搜索的时候就基本都是走内存的,性能会非常高。

两者差距非常大,走磁盘和走systenfile cache的读取的性能差距可以说是秒级和毫秒级的差距了;

要让es性能要好,最佳的情况下,就是我们的机器的内存,至少可以容纳你的数据量的一半

最佳的情况下,是仅仅在es中就存少量的数据,存储要用来搜索的那些索引,内存留给filesystem cache的,如果就100G,那么你就控制数据量在100gb以内,相当于是,你的数据几乎全部走内存来搜索,性能非常之高,一般可以在1秒以内

的少数几个字段就可以了,比如说,就写入es id name age三个字段就可以了,然后你可以把其他的字段数据存在mysql里面,我们一般是建议用 es + hbase 的一个架构。
hbase的特点是适用于海量数据的在线存储,就是对hbase可以写入海量数据,不要做复杂的搜索,就是做很简单的一些根据id或者范围进行查询的这么一个 *** 作就可以了

如果确实内存不足,但是我们又存储了比较多的数据,比如只有30g给systemfile cache,但是存储了60g数据情况,这种情况可以做数据预热;

我们可以将一些高频访问的热点数据(比如微博知乎的热榜榜单数据,电商的热门商品(旗舰版手机,榜单商品信息)等等)提前预热,定期访问刷到我们es里;(比如定期访问一下当季苹果旗舰手机关键词,比如现在的iphone12)

对于那些你觉得比较热的,经常会有人访问的数据,最好做一个专门的缓存预热子系统,就是对热数据,每隔一段时间,提前访问一下,让数据进入filesystem cache里面去。这样下次别人访问的时候,一定性能会好一些。

我们可以将冷数据写入一个索引中,然后热数据写入另外一个索引中,这样可以确保热数据在被预热之后,尽量都让他们留在filesystem os cache里,别让冷数据给冲刷掉。

尽量做到设计document的时候就把需要数据结构都做好,这样搜索的数据写入的时候就完成。对于一些太复杂的 *** 作,比如join,nested,parent-child搜索都要尽量避免,性能都很差的。

es的分页是较坑的 ,为啥呢?举个例子吧,假如你每页是10条数据,你现在要查询第100页,实际上是会把 每个shard上存储的前1000条数据都查到 一个协调节点上,如果你有个5个shard,那么就有5000条数据,接着 协调节点对这5000条数据进行一些合并、处理,再获取到最终第100页的10条数据。

因为他是分布式的,你要查第100页的10条数据,你是不可能说从5个shard,每个shard就查2条数据?最后到协调节点合并成10条数据?这样肯定不行,因为我们从单个结点上拿的数据几乎不可能正好是所需的数据。我们必须得从每个shard都查1000条数据过来,然后根据你的需求进行排序、筛选等等 *** 作,最后再次分页,拿到里面第100页的数据。

你翻页的时候,翻的越深,每个shard返回的数据就越多,而且协调节点处理的时间越长。非常坑爹。所以用es做分页的时候,你会发现越翻到后面,就越是慢。

我们之前也是遇到过这个问题,用es作分页,前几页就几十毫秒,翻到10页之后,几十页的时候,基本上就要5~10秒才能查出来一页数据了

你系统不允许他翻那么深的页,或者产品同意翻的越深,性能就越差

如果是类似于微博中,下拉刷微博,刷出来一页一页的,可以用scroll api
scroll api1 scroll api2
scroll会一次性给你生成所有数据的一个快照,然后每次翻页就是通过游标移动 ,获取下一页下一页这样子,性能会比上面说的那种分页性能也高很多很多

scroll的原理实际上是保留一个数据快照,然后在一定时间内,你如果不断的滑动往后翻页的时候,类似于你现在在浏览微博,不断往下刷新翻页。那么就用scroll不断通过游标获取下一页数据,这个性能是很高的,比es实际翻页要好的多的多。

缺点:

ES集群中各节点角色功能简介

本博客根据ES 715 ,介绍ES中各节点角色功能。集群节点角色可以在配置文件elasticsearchyml中通过noderoles配置,如果配置了节点角色,那么该节点将只会执行配置的角色功能;如果不配置,该节点将会执行以下角色功能:
1、如果私自配置节点信息,请确保集群配置有master角色的节点和data角色的节点

2、如果有较大的机器学习(machine learning)任务或转换(transform)任务,建议将候选的主节点(Master-eligible node)与数据节点(data node)、机器学习节点(machine learning node)和转换节点(transforming node)分开是很有必要的。

3、每个节点都默认为协调节点(Coordinating node),如果noderoles设置为[]那么该节点将只执行协调节点功能
ES集群

(1)Cluster:代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的。es的一个概念就是去中心化,字面上理解就是无中心节点,这是对于集群外部来说的,因为从外部来看es集群,在逻辑上是个整体,你与任何一个节点的通信和与整个es集群通信是等价的。

(2)Shards:代表索引分片,es可以把一个完整的索引分成多个分片,这样的好处是可以把一个大的索引拆分成多个,分布到不同的节点上。构成分布式搜索。分片的数量只能在索引创建前指定,并且索引创建后不能更改。

(3)replicas:代表索引副本,es可以设置多个索引的副本,副本的作用一是提高系统的容错性,当某个节点某个分片损坏或丢失时可以从副本中恢复。二是提高es的查询效率,es会自动对搜索请求进行负载均衡。

(4)Recovery:代表数据恢复或叫数据重新分布,es在有节点加入或退出时会根据机器的负载对索引分片进行重新分配,挂掉的节点重新启动时也会进行数据恢复。

(5)ES为什么要实现集群:在单台ES服务器节点上,随着业务量的发展索引文件慢慢增多,会影响到效率和内存存储问题等。ES集群,可以将单个索引的分片到多个不同分布式物理机器上存储,从而可以实现高可用、容错性等。ES集群中索引可能由多个分片构成,并且每个分片可以拥有多个副本。通过将一个单独的索引分为多个分片,我们可以处理不能在一个单一的服务器上面运行的大型索引,简单的说就是索引的大小过大,导致效率问题。不能运行的原因可能是内存也可能是存储。由于每个分片可以有多个副本,通过将副本分配到多个服务器,可以提高查询的负载能力。

(6)es如何解决高并发:ES是一个分布式全文检索框架,隐藏了复杂的处理机制,内部使用 分片机制、集群发现、分片负载均衡请求路由。 Shards 分片:代表索引分片,es可以把一个完整的索引分成多个分片,这样的好处是可以把一个大的索引拆分成多个,分布到不同的节点上。构成分布式搜索。分片的数量只能在索引创建前指定,并且索引创建后不能更改。Replicas分片:代表索引副本,es可以设置多个索引的副本,副本的作用一是提高系统的容错性,当某个节点某个分片损坏或丢失时可以从副本中恢复。二是提高es的查询效率,es会自动对搜索请求进行负载均衡。
5、ES集群脑裂
6、ES集群的分布式存储

·  如新增一个文档流程 文档-->协调节点(hash运算)-->mater-->决策路由到对应主分片如node3节点-->同步副本分片到node2节点上-->返回结构到

协调节点coordinating node-->再传至matster

6、故障转移
·  停掉master

·  cerebro界面集群状态瞬间变黄了

·  这是之前master节点的分片开始转移至剩余的两个节点,集群剩余两个节点,且保证主副分片不在同一个几点

·  重新启动故障节点,集群再次恢复三个节点,分片自动转移过去,但是此时它已不是master节点

>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10396790.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存