这会导致瓶颈首先出现在某些数据库记录上,大量 *** 作由于无法竞争到数据库的行锁而导致等待,这些等待中的 *** 作又会占用其他资源,最终导致系统不可用。
介绍一些常用的处理办法:
1、不设置余额字段。由于对于一个稳定的计费来说,一定是会记录计费流水明细的,所以完全可以不设置余额字段,而采用根据流水明细计算的方式来获取余额。
2、合并与拆分。合并,就是对单个账号的数次请求作合并处理,再往数据库写,这样就等于降低了数倍的压力。拆分,则是把一个主账号拆分成数个子账号,然后把请求分配到各个子账号上,这样单个账号的压力就小了。然后再用其他手段把子账号的数据合并成主账号数据,返回给用户,减少行锁占用时间。以下是一些总结的方法: 第一,确认服务器硬件是否足够支持当前的流量。 普通的P4服务器一般最多能支持每天10万独立IP,如果访问量比这个还要大,那么必须首先配置一台更高性能的专用服务器才能解决问题,否则怎么优化都不可能彻底解决性能问题。
第二,优化数据库访问。 服务器的负载过大,一个重要的原因是CPU负荷过大,降低服务器CPU的负荷,才能够有效打破瓶颈。而使用静态页面可以使得CPU的负荷最小化。前台实现完全的静态化 当然最好,可以完全不用访问数据库,不过对于频繁更新的网站,静态化往往不能满足某些功能。 缓存技术 就是另一个解决方案,就是将动态数据存储到缓存文件中,动态网页直接调用这些文件,而不必再访问数据库,WordPress和Z-Blog都大量使用这种缓存技术 。我自己也写过一个Z-Blog的计数器插件,也是基于这样的原理。 如果确实无法避免对数据库的访问,那么可以尝试优化数据库的查询SQL避免使用Select from这样的语句,每次查询只返回自己需要的结果,避免短时间内的大量SQL查询。
第三,禁止外部的盗链。 外部网站的或者文件盗链往往会带来大量的负载压力,因此应该严格限制外部对于自身的或者文件盗链,好在目前可以简单地通过refer来控制盗链,Apache自己就可以通过配置来禁止盗链,IIS也有一些第三方的ISAPI可以实现同样的功能。当然,伪造refer也可以通过代码来实现盗 链,不过目前蓄意伪造refer盗链的还不多,可以先不去考虑,或者使用非技术手段来解决,比如在上增加水印。
第四,控制大文件的下载。 大文件的下载会占用很大的流量,并且对于非SCSI硬盘来说,大量文件下载会消耗CPU,使得网站响应能力下降。因此,尽量不要提供超过2M的大 文件下载,如果需要提供,建议将大文件放在另外一台服务器上。目前有不少免费的Web20网站提供分享和文件分享功能,因此可以尽量将和文件上 传到这些分享网站。
第五,使用不同主机分流主要流量 将文件放在不同的主机上,提供不同的镜像供用户下载。比如如果觉得RSS文件占用流量大,那么使用FeedBurner或者FeedSky等服务将RSS输出放在其他主机上,这样别人访问的流量压力就大多集中在FeedBurner的主机上,RSS就不占用太多资源了。
第六,使用流量分析统计软件。 在网站上安装一个流量分析统计软件,可以即时知道哪些地方耗费了大量流量,哪些页面需要再进行优化,因此,解决流量问题还需要进行精确的统计分析 才可以。我推荐使用的流量分析统计软件是GoogleAnalytics(Google分析)。我使用过程中感觉其效果非常不错,稍后我将详细介绍一下 GoogleAnalytics的一些使用常识和技巧。 1分表 2读写分离 3前端优化。Nginx替换Apache(前端做负载均衡) 个人认为主要还是分布式架构是否到位,mysql和缓存的优化都是有限度的优化,而分布式架构做出来了,PV增长后,只需要堆机器就能扩容。
另附一些优化经验,首先学会用explain语句分析select语句,优化索引、表结构,其次,合理运用memcache等缓存,降低mysql的负载,最后,如果可能的话,尽量用facebook的hiphop-php把PHP编译了,提高程序效率。
高并发,几乎是每个程序员都想拥有的经验。原因很简单:随着流量变大,会遇到各种各样的技术问题,比如接口响应超时、CPU load升高、GC频繁、死锁、大数据量存储等等,这些问题能推动我们在技术深度上不断精进。
在过往的面试中,如果候选人做过高并发的项目,我通常会让对方谈谈对于高并发的理解,但是能系统性地回答好此问题的人并不多。
大概分成这样几类:
1、对数据化的指标没有概念 :不清楚选择什么样的指标来衡量高并发系统?分不清并发量和QPS,甚至不知道自己系统的总用户量、活跃用户量,平峰和高峰时的QPS和TPS等关键数据。
3、理解片面,把高并发设计等同于性能优化 :大谈并发编程、多级缓存、异步化、水平扩容,却忽视高可用设计、服务治理和运维保障。
4、掌握大方案,却忽视最基本的东西 :能讲清楚垂直分层、水平分区、缓存等大思路,却没意识去分析数据结构是否合理,算法是否高效,没想过从最根本的IO和计算两个维度去做细节优化。
这篇文章,我想结合自己的高并发项目经验,系统性地总结下高并发需要掌握的知识和实践思路,希望对你有所帮助。内容分成以下3个部分:
高并发意味着大流量,需要运用技术手段抵抗流量的冲击,这些手段好比 *** 作流量,能让流量更平稳地被系统所处理,带给用户更好的体验。
我们常见的高并发场景有:淘宝的双11、春运时的抢票、微博大V的热点新闻等。除了这些典型事情,每秒几十万请求的秒杀系统、每天千万级的订单系统、每天亿级日活的信息流系统等,都可以归为高并发。
很显然,上面谈到的高并发场景,并发量各不相同, 那到底多大并发才算高并发呢?
1、不能只看数字,要看具体的业务场景。不能说10W QPS的秒杀是高并发,而1W QPS的信息流就不是高并发。信息流场景涉及复杂的推荐模型和各种人工策略,它的业务逻辑可能比秒杀场景复杂10倍不止。因此,不在同一个维度,没有任何比较意义。
2、业务都是从0到1做起来的,并发量和QPS只是参考指标,最重要的是:在业务量逐渐变成原来的10倍、100倍的过程中,你是否用到了高并发的处理方法去演进你的系统,从架构设计、编码实现、甚至产品方案等维度去预防和解决高并发引起的问题?而不是一味的升级硬件、加机器做水平扩展。
此外,各个高并发场景的业务特点完全不同:有读多写少的信息流场景、有读多写多的交易场景, 那是否有通用的技术方案解决不同场景的高并发问题呢?
我觉得大的思路可以借鉴,别人的方案也可以参考,但是真正落地过程中,细节上还会有无数的坑。另外,由于软硬件环境、技术栈、以及产品逻辑都没法做到完全一致,这些都会导致同样的业务场景,就算用相同的技术方案也会面临不同的问题,这些坑还得一个个趟。
因此,这篇文章我会将重点放在基础知识、通用思路、和我曾经实践过的有效经验上,希望让你对高并发有更深的理解。
先搞清楚高并发系统设计的目标,在此基础上再讨论设计方案和实践经验才有意义和针对性。
高并发绝不意味着只追求高性能,这是很多人片面的理解。从宏观角度看,高并发系统设计的目标有三个:高性能、高可用,以及高可扩展。
1、高性能:性能体现了系统的并行处理能力,在有限的硬件投入下,提高性能意味着节省成本。同时,性能也反映了用户体验,响应时间分别是100毫秒和1秒,给用户的感受是完全不同的。
2、高可用:表示系统可以正常服务的时间。一个全年不停机、无故障;另一个隔三差五出线上事故、宕机,用户肯定选择前者。另外,如果系统只能做到90%可用,也会大大拖累业务。
3、高扩展:表示系统的扩展能力,流量高峰时能否在短时间内完成扩容,更平稳地承接峰值流量,比如双11活动、明星离婚等热点事件。
这3个目标是需要通盘考虑的,因为它们互相关联、甚至也会相互影响。
比如说:考虑系统的扩展能力,你会将服务设计成无状态的,这种集群设计保证了高扩展性,其实也间接提升了系统的性能和可用性。
再比如说:为了保证可用性,通常会对服务接口进行超时设置,以防大量线程阻塞在慢请求上造成系统雪崩,那超时时间设置成多少合理呢?一般,我们会参考依赖服务的性能表现进行设置。
再从微观角度来看,高性能、高可用和高扩展又有哪些具体的指标来衡量?为什么会选择这些指标呢?
221 性能指标
通过性能指标可以度量目前存在的性能问题,同时作为性能优化的评估依据。一般来说,会采用一段时间内的接口响应时间作为指标。
1、平均响应时间:最常用,但是缺陷很明显,对于慢请求不敏感。比如1万次请求,其中9900次是1ms,100次是100ms,则平均响应时间为199ms,虽然平均耗时仅增加了099ms,但是1%请求的响应时间已经增加了100倍。
2、TP90、TP99等分位值:将响应时间按照从小到大排序,TP90表示排在第90分位的响应时间, 分位值越大,对慢请求越敏感。
3、吞吐量:和响应时间呈反比,比如响应时间是1ms,则吞吐量为每秒1000次。
通常,设定性能目标时会兼顾吞吐量和响应时间,比如这样表述:在每秒1万次请求下,AVG控制在50ms以下,TP99控制在100ms以下。对于高并发系统,AVG和TP分位值必须同时要考虑。
另外,从用户体验角度来看,200毫秒被认为是第一个分界点,用户感觉不到延迟,1秒是第二个分界点,用户能感受到延迟,但是可以接受。
因此,对于一个 健康 的高并发系统,TP99应该控制在200毫秒以内,TP999或者TP9999应该控制在1秒以内。
222 可用性指标
高可用性是指系统具有较高的无故障运行能力,可用性 = 正常运行时间 / 系统总运行时间,一般使用几个9来描述系统的可用性。
对于高并发系统来说,最基本的要求是:保证3个9或者4个9。原因很简单,如果你只能做到2个9,意味着有1%的故障时间,像一些大公司每年动辄千亿以上的GMV或者收入,1%就是10亿级别的业务影响。
223 可扩展性指标
面对突发流量,不可能临时改造架构,最快的方式就是增加机器来线性提高系统的处理能力。
对于业务集群或者基础组件来说,扩展性 = 性能提升比例 / 机器增加比例,理想的扩展能力是:资源增加几倍,性能提升几倍。通常来说,扩展能力要维持在70%以上。
但是从高并发系统的整体架构角度来看,扩展的目标不仅仅是把服务设计成无状态就行了,因为当流量增加10倍,业务服务可以快速扩容10倍,但是数据库可能就成为了新的瓶颈。
像MySQL这种有状态的存储服务通常是扩展的技术难点,如果架构上没提前做好规划(垂直和水平拆分),就会涉及到大量数据的迁移。
因此,高扩展性需要考虑:服务集群、数据库、缓存和消息队列等中间件、负载均衡、带宽、依赖的第三方等,当并发达到某一个量级后,上述每个因素都可能成为扩展的瓶颈点。
了解了高并发设计的3大目标后,再系统性总结下高并发的设计方案,会从以下两部分展开:先总结下通用的设计方法,然后再围绕高性能、高可用、高扩展分别给出具体的实践方案。
通用的设计方法主要是从「纵向」和「横向」两个维度出发,俗称高并发处理的两板斧:纵向扩展和横向扩展。
311 纵向扩展(scale-up)
它的目标是提升单机的处理能力,方案又包括:
1、提升单机的硬件性能:通过增加内存、 CPU核数、存储容量、或者将磁盘 升级成SSD 等堆硬件的方式来提升。
2、提升单机的软件性能:使用缓存减少IO次数,使用并发或者异步的方式增加吞吐量。
312 横向扩展(scale-out)
因为单机性能总会存在极限,所以最终还需要引入横向扩展,通过集群部署以进一步提高并发处理能力,又包括以下2个方向:
1、做好分层架构:这是横向扩展的提前,因为高并发系统往往业务复杂,通过分层处理可以简化复杂问题,更容易做到横向扩展。
上面这种图是互联网最常见的分层架构,当然真实的高并发系统架构会在此基础上进一步完善。比如会做动静分离并引入CDN,反向代理层可以是LVS+Nginx,Web层可以是统一的API网关,业务服务层可进一步按垂直业务做微服务化,存储层可以是各种异构数据库。
2、各层进行水平扩展:无状态水平扩容,有状态做分片路由。业务集群通常能设计成无状态的,而数据库和缓存往往是有状态的,因此需要设计分区键做好存储分片,当然也可以通过主从同步、读写分离的方案提升读性能。
下面再结合我的个人经验,针对高性能、高可用、高扩展3个方面,总结下可落地的实践方案。
321 高性能的实践方案
1、集群部署,通过负载均衡减轻单机压力。
2、多级缓存,包括静态数据使用CDN、本地缓存、分布式缓存等,以及对缓存场景中的热点key、缓存穿透、缓存并发、数据一致性等问题的处理。
3、分库分表和索引优化,以及借助搜索引擎解决复杂查询问题。
4、考虑NoSQL数据库的使用,比如HBase、TiDB等,但是团队必须熟悉这些组件,且有较强的运维能力。
5、异步化,将次要流程通过多线程、MQ、甚至延时任务进行异步处理。
6、限流,需要先考虑业务是否允许限流(比如秒杀场景是允许的),包括前端限流、Nginx接入层的限流、服务端的限流。
7、对流量进行 削峰填谷 ,通过 MQ承接流量。
8、并发处理,通过多线程将串行逻辑并行化。
9、预计算,比如抢红包场景,可以提前计算好红包金额缓存起来,发红包时直接使用即可。
10、 缓存预热 ,通过异步 任务 提前 预热数据到本地缓存或者分布式缓存中。
11、减少IO次数,比如数据库和缓存的批量读写、RPC的批量接口支持、或者通过冗余数据的方式干掉RPC调用。
12、减少IO时的数据包大小,包括采用轻量级的通信协议、合适的数据结构、去掉接口中的多余字段、减少缓存key的大小、压缩缓存value等。
13、程序逻辑优化,比如将大概率阻断执行流程的判断逻辑前置、For循环的计算逻辑优化,或者采用更高效的算法。
14、各种池化技术的使用和池大小的设置,包括>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)