环境的话,一般就是需要注意物理环境。即温度、电源、地板、防火系统。
作为机房(电脑学习室/数据中心),它的物理环境是受到了严格控制的,主要分为几个方面:即温度、电源、地板、防火系统。
温度
说到温度,一般用的都是空调了。空调用来控制数据中心的温度和湿度,制冷与空调工程协会的“数据处理环境热准则”建议温度范围为20-25℃(68-75℉),湿度范围为40-55%,适宜数据中心环境的最大露点温度是17℃。在数据中心电源会加热空气,除非热量被排除出去,否则环境温度就会上升,导致电子设备失灵。通过控制空气温度,服务器组件能够保持制造商规定的温度/湿度范围内。空调系统通过冷却室内空气下降到露点帮助控制湿度,湿度太大,水可能在内部部件上开始凝结。如果在干燥的环境中,辅助加湿系统可以添加水蒸气,因为如果湿度太低,可能导致静电放电问题,可能会损坏元器件。
电源
机房的电源由一个或多个不间断电源(UPS)和/或柴油发电机组成备用电源。为了避免出现单点故障,所有电力系统,包括备用电源都是全冗余的。对于关键服务器来说,要同时连接到两个电源,以实现N+1冗余系统的可靠性。静态开关有时用来确保在发生电力故障时瞬间从一个电源切换到另一个电源。
地板
机房的地板相对瓷砖地板要提升60厘米(2英尺),这个高度随社会发展变得更高了,是80-100厘米,以提供更好的气流均匀分布。这样空调系统可以把冷空气也灌到地板下,同时也为地下电力线布线提供更充足的空间,现代数据中心的数据电缆通常是经由高架电缆盘铺设的,但仍然有些人建议出于安全考虑还是应将数据线铺设到地板下,并考虑增加冷却系统。小型数据中心里没有提升的地板可以不用防静电地板。计算机机柜往往被组织到一个热通道中,以便使空气流通效率最好。
防火系统
机房的防火系统包括无源和有源设计,以及防火行动执行计划。通常会安装烟雾探测器,在燃烧产生明火之前能够提前发现火警,在火势增大之前可以截断电源,使用灭火器手动灭火。在数据中心是不能使用自动喷水灭火装置的,因为电子元器件遇水后通常会发生故障,特别是电源未截断的情况下使用水灭火情况会变得更糟。即使安装了自动喷水灭火系统,清洁气体灭火系统也应早于自动喷水灭火系统启动。在数据中心还应该安装防火墙,这样可以将火源控制在局部范围内,即便是发生火灾也可以将损失减到最低。
配置方式:
1 完成自定义监控脚本的编写(windows或linux脚本)
脚本要求:(1)既然是监控,那必然要有输出结果值(字符串,数字皆可)
(2)必须要求zabbix用户有执行权限,当然可以直接设置所有用户都有执行权限(chmod 777 脚本文件)
(3)若脚本需要传入参数,按照参数传入的顺序,在脚本中可用$1-$9来引用传入的参数
2 找到zabbix agent的配置文件zabbix_agentdconf,修改如下两个参数
UnsafeUserParameters=0 => UnsafeUserParameters=1并去掉前面的注释符
UserParameter= => UserParameter=aaabbb[], /usr/local/script/monitorsh $1 $2 …
说明:aaabbb[] ---zabbix服务器添加监控信息时需要用到的key值,
格式:aaabbb[](例:systemfilesize[])
/usr/local/script/monitorsh ----监控脚本绝对路径
为了便于灵活监控,有时脚本需要传入参数,此参数可从zabbix服务器端传入,所有参数按顺序分别从$1-$9表示
注:(1)若无需传入参数,则红色部分可省略
(2)该自定义脚本可由zabbix服务器控制收集数据的频率(如:每30s运行一次),无需再添加计划任务
(3)以上参数请根据实际情况填写,并注意去除参数前注释符(#)
(4)注意在key值和后面的脚本之间有个逗号隔开
至此,自定义监控脚本zabbix agent端配置结束
3 测试
测试命令: /usr/local/bin/zabbix_agentd -t key[参数]
示例:/usr/local/bin/zabbix_agentd -t systemfilesize[/etc/atxt,abc,…]
4 监控脚本举例:
脚本名称:/usr/local/script/monitorsh
脚本内容:echo `date +"%F %T"`
脚本要求:必须在控制台输出值,该值将作为返回值返回给zabbix服务器端
搭建纯SSD架构的高性能企业级云服务器,采用高端Intel Haswell CPU、高频DDR4内存、高速Sas3 SSD闪存作为底层硬件配置。
怎样估算oracle服务器的硬件配置 Dell PowerEdge T710
标准配置
TPCC:239,392
公司用最好还是用专业级的服务器,打电话给相关电脑服务器供应商很容易了解行情。否则,找台内存大点儿的机器,速度快点儿的机器也凑合着用。
联想rd350服务器怎么查硬件配置
因为阵列卡等设备的原因,在服务器上检测硬盘不太方便,如果是sata盘,拔下直接上台式机检测。
我用的是小鸟云的服务器,挺不错。
打水服务器通常是指虚拟服务器业务,多在境外。 打水的服务器,一般都是需要高配置,一般为Q84OO以上,i3 i5 17是目前市面上的打水服务器的最佳选择。
小提示:目前,打水虽然有风险,但是还是有利可图的,但是要方法得当,如果你打两个月都赚不到点钱,建议不要再打,因为可能你不合适做打水,正如不是个个人都能炒股赚到钱一样。
dell R310 X3430/4G/500G2 sata/raid1 这个配置用于邮件服务器足够了,软件推荐用:《科信KXmail邮件系统》,可以查下!
选购服务器硬件配置要注意什么?服务器硬件配置要稳定高效,千万不要选购一些太便宜的服务器配件,如果服务器运行时因为配置问题出现什么问题,损失就很大了,如机箱一定要选择好点的,国产有家叫IOK的机箱还可以,你去了解下。什么EMC啊 防震效果 听说都是不错 而且最大的好处是可以定制 客户喜欢咋整就咋整
怎么配置服务器硬件300个web站点,说多也不多,说少也不少了。在这个阶段,可以先用这款双路四核的服务器,标配一颗至强E5620四核处理器,英特尔5500芯片组服务器主板,2G DDR3 REG ECC内存,SSD 80G固态硬盘,双千兆网卡,性能可以说是相当不错,带100万广告联盟没问题。如果以后访问量增加,可以扩展到两颗处理器,达成8颗处理核心,16条处理线程(在任务管理器的cpu格子窗口能看到16个- -~~~相当变态),内存可以增加到24GB!
当环境温度升高后、或系统运行大型程序后、甚至是有的硬件在出现故障后,都有可能出现高温的情况,许多用户也经常询问硬件工作时多少温度才算正常,若不急时处理高温问题,就会导致硬件出现致命性损害,并且多数是无法修复的损害,因此时常关注硬件工作温度,并及时处理高温情况,则是电脑用户非常有必要注意的环节1 CPU温度:正常情况下45~65℃(或更低),高于75-80℃则要检查CPU和风扇间的散热硅脂是否失效、更换CPU风扇或给风扇除尘,部分CPU会自我保护,温度过高会自动降频(一般为标准频率的一半),但要排除CPU超频时的情况,当用户在超频时CPU温度则会较。
2 CPU风扇:通常1000~2500转左右(可能会因主板或CPU的工作状态不同而动态调整),早期的CPU风扇可能达到5000转或更高,服务器风扇则比一般的要高,可达到10000转以上,部分超频专用风扇也可以达到10000转左右,若低于1000转的情况,则需要检查风扇是否正常工作或灰尘过多。 3
主板温度:正常情况下40~60℃左右(或更低),视不同的主板品牌、芯片组而定,有的超频主板则可以工作做更高的温度下,若机箱内部环境温度高于70℃时,则需要关机休息、检查、增加机箱风扇或打开机箱使用外置散热方式。
4主板风扇:通常主板都不具备该项功能,但也有极少数主板有此功能,如超频类主板等,具体信息与CPU风扇类似,但转速一般稍微低一些。
5 显卡温度:显卡是整个机箱里温度最高的硬件,常规下50~70℃(或更低),运行大型3D游戏或播放高清视频的时候,温度可达到100℃左右,一般高负载下不超过110℃均视为正常范畴,如有必要,则可适当调高风扇转速,来降低显卡温度。海拔高度
工作时:最高10,000 英尺(3000 米)
非工作时:最高15,000 英尺(4500 米)
温度
工作时:41 到95°F(5 到35℃);
海拔高于5,000 英尺时,最高温度降低速率为18°F(1℃)/1000 英尺(300 米)
非工作时:-40 到+158°F(-40 到+70℃)
最高温度变化速率:每小时36°F(20℃)
湿度
工作时:15% 到80% 相对非冷凝;最大湿球温度= 79°F(26°C)
惠普已经通过动态智能冷却技术解决了高温问题,因此,使用AMD处理器的惠普服务器时,不需要特别注意最高温度的控制。
Active Cool风扇技术拥有高风量(CFM)、高风压、最佳噪音效果、最佳功耗等特点,可仅使用100瓦电力冷却16台刀片服务器。其设计理念基于飞行器技术,扇叶转速达136英里/小时,在产生强劲气流的同时比传统风扇设计耗电量更低,在该技术正在申请20项专利,能够轻松扩展以适应未来要求最苛刻的产品蓝图要求。
惠普推动绿色刀片策略 打造绿色数据中心
随着国家政策对节能降耗要求的提高,节能降耗正成为国家、全社会关注的重点。而IT能耗在所有的电力使用当中所占比重的不断上升,已经使其成为社会提倡节能降耗主要领域之一。做为全球领先的IT公司和一家具有强烈社会责任感的企业,惠普公司积极倡导“绿色IT”的理念,并加大研发,推出了一系列的针对绿色IT的创新技术和产品。
10月26日,惠普公司在香山饭店举办了“绿色刀片”的研讨会,介绍了惠普公司新一代数据中心以及新一代刀片系统BladeSystem c-Class在供电散热等方面的绿色创新技术以及环保节能优势,并推出了针对绿色数据中心的完整解决方案。
长期以来,更强大的数据中心处理能力一直是我们追求的目标。但在能源开销与日俱增的今天,处理能力发展的另一面是需要消耗更多的资源。而且随着服务器密度的不断增大,供电需求也在相应增加,并由此产生了更多的热量。在过去的十年中,服务器供电密度平均增长了十倍。据IDC预测,到2008年IT采购成本将与能源成本持平。另一方面,数据中心的能耗中,冷却又占了能耗的60%到70%。因此,随着能源价格的节节攀升,数据中心的供电和冷却问题,已经成为所有的数据中心都无法回避的问题。
惠普公司十几年来一直致力于节能降耗技术的研究,并致力于三个层面的创新:一是数据中心层面环境级的节能技术;二是针对服务器、存储等IT产品在系统层面的绿色设计;三是对关键节能部件的研发,如供电、制冷、风扇等方面的技术创新。目前,来自惠普实验室的这些创新技术正在引领业界的绿色趋势。
针对数据中心环境层面,惠普推出了全新的动态智能冷却系统帮助客户构建新一代绿色数据中心或对原有数据中心进行改造;在设备层面,惠普的新一代绿色刀片服务器系统以能量智控(Thermal Logic)技术以及PARSEC体系架构等方面的创新成为未来数据中心节能的最关键基础设施;同时这些创新技术体现在一些关键节能部件上,如 Active Cool(主动散热)风扇、动态功率调整技术(DPS, Dynamic Power Saver)等。惠普公司的绿色创新将帮助客户通过提高能源效率来降低运营成本。
HP DSC精确制冷 实现绿色数据中心
传统数据中心机房采用的是平均制冷设计模式,但目前随着机架式服务器以及刀片服务器的出现和普及,数据中心出现了高密度服务器与低密度混合的模式,由于服务器的密度不均衡,因而产生的热量也不均衡,传统数据中心的平均制冷方法已经很难满足需求。造成目前数据中心的两个现状:一是目前85%以上的机房存在过度制冷问题;二在数据中心的供电中,只有1/3用在IT设备上,而制冷费用占到总供电的 2/3 。因此降低制冷能耗是数据中心节能的关键所在。
针对传统数据中心机房的平均制冷弊端,惠普推出了基于动态智能制冷技术的全新解决方案—— “惠普动态智能冷却系统”(DSC, Dynamic Smart Cooling)。动态智能冷却技术的目标是通过精确制冷,提高制冷效率。DSC可根据服务器运行负荷动态调控冷却系统来降低能耗,根据数据中心的大小不同,节能可达到20%至45%。
DSC结合了惠普在电源与冷却方面的现有创新技术,如惠普刀片服务器系统 c-Class架构的重要组件HP Thermal Logic等技术,通过在服务器机架上安装了很多与数据中心相连的热能探测器,可以随时把服务器的温度变化信息传递到中央监控系统。当探测器传递一个服务器温度升高的信息时,中央监控系统就会发出指令给最近的几台冷却设备,加大功率制冷来降低那台服务器的温度。当服务器的温度下降后,中央监控系统会根据探测器传递过来的新信息,发出指令给附近的冷却设备减小功率。惠普的实验数据显示,在惠普实验室的同一数据中心不采用DSC技术,冷却需要117千瓦,而采用DSC系统只需要72千瓦。
惠普刀片系统:绿色数据中心的关键生产线
如果把数据中心看作是一个“IT工厂”,那么“IT工厂”节能降耗不仅要通过DSC等技术实现“工厂级”环境方面的节能,最重要的是其中每一条“生产线”的节能降耗,而数据中心的生产线就是服务器、存储等IT设备。目前刀片系统以节约空间、便于集中管理、易于扩展和提供不间断的服务,满足了新一代数据中心对服务器的新要求,正成为未来数据中心的重要“生产线”。因此刀片系统本身的节能环保技术是未来数据中心节能降耗的关键所在。
惠普公司新一代绿色刀片系统HP BladeSystem c-Class基于工业标准的模块化设计,它不仅仅集成了刀片服务器和刀片存储,还集成了数据中心的众多要素如网络、电源/冷却和管理等,即把计算、存储、网络、电源/冷却和管理都整合到一起。同时在创新的BladeSystem c-Class刀片系统中,还充分考虑了现代数据中心基础设施对电源、冷却、连接、冗余、安全、计算以及存储等方面的需求。
在标准化的硬件平台基础上,惠普刀片系统的三大关键技术,更令竞争对手望尘莫及。首先是惠普洞察管理技术——它通过单一的控制台实现了物理和虚拟服务器、存储、网络、电源以及冷却系统的统一和自动化管理,使管理效率提升了10倍,管理员设备配比达到了1:200。第二是能量智控技术——通过有效调节电力和冷却减少能量消耗,超强冷却风扇相对传统风扇降低了服务器空气流40%,能量消耗减少 50%。最后是虚拟连接架构——大大减少了线缆数量,无需额外的交换接口管理。允许服务器额外增加、可替代、可移动,并无需管理员参与SAN和LAN的更改。
目前,惠普拥有完整的刀片服务器战略和产品线,既有支持2路或4路的ProLiant刀片服务器,也有采用安腾芯片的Integrity刀片系统,同时还有存储刀片、备份刀片等。同时,惠普BladeSystem c-Class刀片服务器系统已得到客户的广泛认可。根据IDC发布的2006年第四季度报告显示,惠普在刀片服务器的工厂营业额和出货量方面都占据了全球第一的位置。2007年第二季度,惠普刀片市场份额472%,领先竞争对手达15%,而且差距将会继续扩大。作为刀片市场的领导者,惠普 BladeSystem c-Class刀片系统将成为数据中心的关键基础设施。
PARSEC体系架构和能量智控:绿色生产线的两大核心战略
作为数据中心的关键基础设施,绿色是刀片系统的重要发展趋势之一,也是数据中心节能的关键所在。HP BladeSystem c-Class刀片系统的创新设计中,绿色就是其关键创新技术之一,其独特的PARSEC体系架构和能量智控技术就是这条绿色生产线的两大关键技术。
HP PARSEC体系结构是惠普刀片系统针对绿色策略的另一创新。目前机架服务器都采用内部几个小型局部风扇布局,这样会造成成本较高、功率较大、散热能力差、消费功率和空间。HP PARSEC(Parallel Redundant Scalable Enterprise Cooling)体系结构是一种结合了局部与中心冷却特点的混合模式。机箱被分成四个区域,每个区域分别装有风扇,为该区域的刀片服务器提供直接的冷却服务,并为所有其它部件提供冷却服务。由于服务器刀片与存储刀片冷却标准不同,而冷却标准与机箱内部的基础元件相适应,甚至有时在多重冷却区内会出现不同类型的刀片。配合惠普创新的 Active Cool风扇,用户就可以轻松获得不同的冷却配置。惠普风扇设计支持热插拔,可通过添加或移除来调节气流,使之有效地通过整个系统,让冷却变得更加行之有效。
惠普的能量智控技术(Thermal Logic)是一种结合了惠普在供电、散热等方面的创新技术的系统级节能方法,该技术提供了嵌入式温度测量与控制能力,通过即时热量监控,可追踪每个机架中机箱的散热量、内外温度以及服务器耗电情况,这使用户能够及时了解并匹配系统运行需求,与此同时以手动或自动的方式设定温度阈值。或者自动开启冷却或调整冷却水平以应对并解决产生的热量,由此实现最为精确的供电及冷却控制能力。通过能量智控管理,客户可以动态地应用散热控制来优化性能、功耗和散热性能,以充分利用电源预算,确保灵活性。采用能量智控技术,同样电力可以供应的服务器数量增加一倍,与传统的机架堆叠式设备相比,效率提升30%。在每个机架插入更多服务器的同时,所耗费的供电及冷却量却保持不变或是减小,整体设计所需部件也将减少。
Active Cool风扇、DPS、电源调整仪:生产线的每个部件都要节能
惠普BladeSystem c-Class刀片系统作为一个“绿色生产线”,通过能量智控技术和PARSEC体系架构实现了“生产线”级的节能降耗,而这条生产线上各组成部件的技术创新则是绿色生产线的关键技术保障。例如,深具革新意义的Active Cool风扇,实现智能电源管理的ProLiant 电源调整仪以及动态功率调整等技术。
风扇是散热的关键部件。风扇设计是否越大越好?答案是否定的。市场上有的刀片服务器产品采用了较大型的集中散热风扇,不仅占用空间大、噪音大,冗余性较差、有漏气通道,而且存在过渡供应、需要较高的供电负荷。
惠普刀片服务器中采用了创新的Active Cool(主动散热)风扇。Active Cool风扇的设计理念源于飞行器技术,体积小巧,扇叶转速达136英里/ 小时,在产生强劲气流的同时比传统型风扇设计耗电量更低。同时具有高风量(CFM)、高风压、最佳噪音效果、最佳功耗等特点,仅使用100瓦电力便能够冷却16台刀片服务器。这项深具革新意义的风扇当前正在申请20项专利。Active Cool风扇配合PARSEC散热技术,可根据服务器的负载自动调节风扇的工作状态,并让最节能的气流和最有效的散热通道来冷却需要的部件,有效减少了冷却能量消耗,与传统散热风扇相比,功耗降低66%,数据中心能量消耗减少50%。
在供电方面,同传统的机架服务器独立供电的方式相比,惠普的刀片系统采用集中供电,通过创新的ProLiant 电源调整仪以及动态功率调整等技术实现了智能电源管理,根据电源状况有针对性地采取策略,大大节省了电能消耗。
ProLiant 电源调整仪(ProLiant Power Regulator)可实现服务器级、基于策略的电源管理。电源调整议可以根据CPU的应用情况为其提供电源,必要时,为CPU应用提供全功率,当不需要时则可使CPU处于节电模式,这使得服务器可以实现基于策略的电源管理。事实上可通过动态和静态两种方式来控制CPU的电源状态,即电源调整议即可以设置成连续低功耗的静态工作模式,也可以设置成根据CPU使用情况自动调整电源供应的动态模式。目前电源调整议可适用于AMD或英特尔的芯片,为方便使用,惠普可通过iLO高级接口显示处理器的使用数据并通过该窗口进行配置 *** 作。电源调整议使服务器在不损失性能的前提下节省了功率和散热成本。
惠普创新的动态功率调整技术(DPS, Dynamic Power Saver)可以实时监测机箱内的电源消耗,并根据需求自动调节电源的供应。由于电源在高负荷下运转才能发挥最大效力,通过提供与用户整体基础设施要求相匹的配电量, DPS进一步改进了耗电状况。例如,当服务器对电源的需求较少时,可以只启动一对供电模块,而使其它供电模块处于stand by状态,而不是开启所有的供电单元,但每个供电单元都以较低的效率运行。当对电源需求增加时,可及时启动STAND BY的供电模块,使之满足供电需求。这样确保了供电系统总是保持最高效的工作状态,同时确保充足的电力供应,但通过较低的供电负荷实现电力的节约。通过动态功率调整技术,每年20个功率为0075/千瓦时的机箱约节省5545美元。
传统数据中心与日俱增的能源开销备受关注,在过去十年中服务器供电费用翻番的同时,冷却系统也为数据中心的基础设施建设带来了空前的压力。为了解决节节攀升的热量与能源消耗的难题,惠普公司创新性地推出了新一代绿色刀片系统 BladeSystem c-Class和基于动态智能制冷技术DSC的绿色数据中心解决方案,通过惠普创新的PARSEC体系架构、能量智控技术(Thermal Logic)以及Active Cool风扇等在供电及散热等部件方面的创新技术来降低能耗,根据数据中心的大小不同,这些技术可为数据中心节能达到20%至45%。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)