以太网具有的一般特征概述如下:
共享媒体:所有网络设备依次使用同一通信媒体。
广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。
CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(CarrierSenseMultipleAccess/CollisionDetection)以防止twp或更多节点同时发送。
MAC地址:媒体访问控制层的所有Ethernet网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。
Ethernet基本网络组成:
共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。
转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。
网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。
交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。
以太网协议:IEEE8023标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:
10Mbps_10Base-TEthernet(8023)
100Mbps_FastEthernet(8023u)
1000Mbps_GigabitEthernet(8023z))
10GigabitEthernet_IEEE8023ae
以太网简史:
1972年,罗伯特梅特卡夫(RobertMetcalfe)和施乐公司帕洛阿尔托研究中心(XeroxPARC)的同事们研制出了世界上第一套实验型的以太网系统,用来实现XeroxAlto(一种具有图形用户界面的个人工作站)之间的互连,这种实验型的以太网用于Alto工作站、服务器以及激光打印机之间的互连,其数据传输率达到了294Mbps。
梅特卡夫发明的这套实验型的网络当时被称为AltoAloha网。1973年,梅特卡夫将其命名为以太网,并指出这一系统除了支持Alto工作站外,还可以支持任何类型的计算机,而且整个网络结构已经超越了Aloha系统。他选择“以太”(ether)这一名词作为描述这一网络的特征:物理介质(比如电缆)将比特流传输到各个站点,就像古老的“以太理论”(luminiferousether)所阐述的那样,古代的“以太理论”认为“以太”通过电磁波充满了整个空间。就这样,以太网诞生了。
最初的以太网事一种实验型的同轴电缆网,冲突检测采用CSMA/CD。该网络的成功,引起了大家的关注。1980年,三家公司(数字设备公司、Intel公司、施乐公司)联合研发了10M以太网10规范。最初的IEEE8023即基于该规范,并且与该规范非常相似。8023工作组于1983年通过了草案,并于1985年出版了官方标准ANSI/IEEEStd8023-1985。从此以后,随着技术的发展,该标准进行了大量的补充与更新,以支持更多的传输介质和更高的传输速率等。
1979年,梅特卡夫成立了3Com公司,并生产出第一个可用的网络设备:以太网卡(NIC),它是允许从主机到IBM终端和PC机等不同设备相互之间实现无缝通信的第一款产品,使企业能够以无缝方式共享和打印文件,从而增强工作效率,提高企业范围的通信能力。
以太网和IEEE8023:
以太网是Xerox公司发明的基带LAN标准。它采用带冲突检测的载波监听多路访问协议(CSMA/CD),速率为10Mbps,传输介质为同轴电缆。以太网是在20世纪70年代为解决网络中零散的和偶然的堵塞而开发的,而IEEE802.3标准是在最初的以太网技术基础上于1980年开发成功的。现在,以太网一词泛指所有采用CSMA/CD协议的局域网。以太网2.0版由数字设备公司、Intel公司和Xerox公司联合开发,它与IEEE802.3兼容。
以太网和IEEE802.3通常由接口卡(网卡)或主电路板上的电路实现。以太网电缆协议规定用收发器将电缆连到网络物理设备上。收发器执行物理层的大部分功能,其中包括冲突检测及收发器电缆将收发器连接到工作站上。
IEEE802.3提供了多种电缆规范,10Base5就是其中的一种,它与以太网最为接近。在这一规范中,连接电缆称作连接单元接口(AUI),网络连接设备称为介质访问单元(MAU)而不再是收发器。
1.以太网和IEEE802.3的工作原理
在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。
在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。
在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而同时发出数据时,就发生冲突。这时,两个传送 *** 作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。
2.以太网和IEEE802.3服务的差别
尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。
IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型
给客人玩的机子是没有硬盘的,通过无盘服务器提供系统服务,这样的好处就是方便管理,二也不容易坏,毕竟机子没硬盘,可以随时断电都不会出问题,出了问题重启一下就好了,不会影响到系统。
游戏更新也方便,无盘服务器自动更新,不用网吧工作人员去费心。还有收银机系统和监控系统。
门禁计费体系的 *** 控原理
计算机发动后,在未进入WINDOWS之前,首要履行一段引导顺序,此引导顺序敞开一个登录窗口,需求输入正确的账户名和暗码。
若是账户名及暗码正确,则正常进入WINDOWS体系,计费正式开端。不然无法进入WINDOWS,也无法运用计算机。
收费体系还将一向监督用户的账户余款能否可以付出下一计费希望的上机费用。当余款不足以付出下一个最小计费单元的费用时,将及时向用户提示并自动关机,然后完全杜绝了歹意逃费和情面上机的表象。
扩展资料:
网吧申办程序
申请人应当向所在地县(市、区)级文化行政部门提出的申请,填写《网络文化经营活动立项申请表》并提交以下材料:
1、工商行政管理部门核发的营业执照或《名称预先核准通知书》和企业章程的复印件。
2、法定代表人或者主要负责人、安全管理人员、专业技术人员的身份z及资格证(毕业证、结业证、培训证)的复印件。
3、验资报告及资金信用证明。
4、自有营业场所产权证明的复印件或者租赁意向书及业主产权证明的复印件。
5、守法经营承诺书。
县(市、区)级文化行政部门应自受理设立申请之日起10个工作日内实地检查并进行初审后,报地级以上市文化行政部门进行审核。
地级以上市文化行政部门应自收到县(市、区)级文化行政部门的初审报告之日起10个工作日内作出审查决定。符合条件的,向县(市、区)级文化行政部门发给同意设立的核准文件;不符合条件的,应当书面说明理由。
申请人取得文化行政部门同意设立的核准文件后,应当向所在地县(市、区)级公安机关申请核发《消防安全检查意见书》和《网络安全管理软件安装证书》,并提交以下材料:
1、地级以上市文化行政部门同意设立互联网上网服务营业场所的批准文件的复印件。
2、与互联网接入服务提供者签定的提供接入服务合同的复印件。
3、法定代表人或者主要负责人、安全管理人员、专业技术人员的身份z及资格证(毕业证、结业证、培训证)的复印件。
4、自有营业场所产权证明的复印件或者租赁合同及业主产权证明的复印件。
5、符合消防安全要求的营业场所地理位置图,建筑平面、立体面及消防审核、验收法律文书。
6、网络拓扑结构图。
7、网络与信息安全管理制度,包括上网用户登记制度、安全管理责任人职责、技术人员职责。
8、已采用网络安全审计管理系统等安全技术措施的证明文件。
县(市、区)级公安机关消防机构和网络安全监察部门应自受理申请之日起10个工作日内进行实地检查,提出初审意见报地级以上市公安机关消防机构和网络安全监察部门分别审核;地级以上市公安执关消防机构和网络安全监察部门应自收到初审意见之日起10个工作日内作出审查决定。
符合条件的,发给《消防安全检查意见书》和《网络安全管理软件安装证书》;不符合条件的,应当向申请人书面说明理由。
参考资料来源:百度百科-无盘网吧
路由器要解释路由器的概念,首先要介绍什么是路由。所谓“路由”,是指把数据从一个地方传送到另一个地方的行为和动作,而路由器,正是执行这种行为动作的机器,它的英文名称为Router。
简单的讲,路由器主要有以下几种功能:
第一,网络互连,路由器支持各种局域网和广域网接口,主要用于互连局域网和广域网,实现不同网络互相通信;
第二,数据处理,提供包括分组过滤、分组转发、优先级、复用、加密、压缩和防火墙等功能;
第三,网络管理,路由器提供包括配置管理、性能管理、容错管理和流量控制等功能。
为了完成“路由”的工作,在路由器中保存着各种传输路径的相关数据--路由表(Routing Table),供路由选择时使用。路由表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路由表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。在路由器中涉及到两个有关地址的名字概念,那就是:静态路由表和动态路由表。由系统管理员事先设置好固定的路由表称之为静态(static)路由表,一般是在系统安装时就根据网络的配置情况预先设定的,它不会随未来网络结构的改变而改变。动态(Dynamic)路由表是路由器根据网络系统的运行情况而自动调整的路由表。路由器根据路由选择协议(Routing Protocol)提供的功能,自动学习和记忆网络运行情况,在需要时自动计算数据传输的最佳路径。
为了简单地说明路由器的工作原理,现在我们假设有这样一个简单的网络。如图所示,A、B、C、D四个网络通过路由器连接在一起。
现在我们来看一下在如图所示网络环境下路由器又是如何发挥其路由、数据转发作用的。现假设网络A中一个用户A1要向C网络中的C3用户发送一个请求信号时,信号传递的步骤如下:
第1步:用户A1将目的用户C3的地址C3,连同数据信息以数据帧的形式通过集线器或交换机以广播的形式发送给同一网络中的所有节点,当路由器A5端口侦听到这个地址后,分析得知所发目的节点不是本网段的,需要路由转发,就把数据帧接收下来。
第2步:路由器A5端口接收到用户A1的数据帧后,先从报头中取出目的用户C3的IP地址,并根据路由表计算出发往用户C3的最佳路径。因为从分析得知到C3的网络ID号与路由器的C5网络ID号相同,所以由路由器的A5端口直接发向路由器的C5端口应是信号传递的最佳途经。
第3步:路由器的C5端口再次取出目的用户C3的IP地址,找出C3的IP地址中的主机ID号,如果在网络中有交换机则可先发给交换机,由交换机根据MAC地址表找出具体的网络节点位置;如果没有交换机设备则根据其IP地址中的主机ID直接把数据帧发送给用户C3,这样一个完整的数据通信转发过程也完成了。
从上面可以看出,不管网络有多么复杂,路由器其实所作的工作就是这么几步,所以整个路由器的工作原理基本都差不多。当然在实际的网络中还远比上图所示的要复杂许多,实际的步骤也不会像上述那么简单,但总的过程是这样的。
增加路由器涉及的基本协议
路由器英文名称为Router,是一种用于连接多个网络或网段的网络设备。这些网络可以是几个使用不同协议和体系结构的网络(比如互联网与局域网),可以是几个不同网段的网络(比如大型互联网中不同部门的网络),当数据信息从一个部门网络传输到另外一个部门网络时,可以用路由器完成。现在,家庭局域网也越来越多地采用路由器宽带共享的方式上网。
路由器在连接不同网络或网段时,可以对这些网络之间的数据信息进行“翻译”,然后“翻译”成双方都能“读”懂的数据,这样就可以实现不同网络或网段间的互联互通。同时,它还具有判断网络地址和选择路径的功能以及过滤和分隔网络信息流的功能。目前,路由器已成为各种骨干网络内部之间、骨干网之间以及骨干网和互联网之间连接的枢纽。
NAT:全称Network Address Translation(网络地址转换),路由器通过NAT功能可以将局域网内部的IP地址转换为合法的IP地址并进行Internet的访问。比如,局域网内部有个IP地址为19216801的计算机,当然通过该IP地址可以和内网其他的计算机通信;但是如果该计算机要访问外部Internet网络,那么就需要通过NAT功能将19216801转换为合法的广域网IP地址,比如21011325100。
DHCP:全称Dynamic Host Configuration Protocol(动态主机配置协议),通过DHCP功能,路由器可以为网络内的主机动态指定IP地址,而不需要每个用户去设置静态IP地址,并将TCP/IP配置参数分发给局域网内合法的网络客户端。
DDNS:全称Dynamic Domain Name Server(动态域名解析系统),通常称为“动态DNS”,因为对于普通的宽带上网使用的都是ISP(网络服务商)提供的动态IP地址。如果在局域网内建立了某个服务器需要Internet用户进行访问,那么,可以通过路由器的DDNS功能将动态IP地址解析为一个固定的域名,比如>DHCP 是 Dynamic Host Configuration Protocol(动态主机分配协议)缩写,它的前身是 BOOTP。BOOTP 原本是用于无磁盘主机连接的网络上面的:网络主机使用 BOOT ROM 而不是磁盘起动并连接上网络,BOOTP 则可以自动地为那些主机设定 TCP/IP 环境。但 BOOTP 有一个缺点:您在设定前须事先获得客户端的硬件地址,而且,与 IP 的对应是静态的。换而言之,BOOTP 非常缺乏 "动态性" ,若在有限的 IP 资源环境中,BOOTP 的一对一对应会造成非常可观的浪费。 DHCP 可以说是 BOOTP 的增强版本,它分为两个部份:一个是服务器端,而另一个是客户端。所有的 IP 网络设定数据都由 DHCP 服务器集中管理,并负责处理客户端的 DHCP 要求;而客户端则会使用从服务器分配下来的IP环境数据。比较起 BOOTP ,DHCP 透过 "租约" 的概念,有效且动态的分配客户端的 TCP/IP 设定,而且,作为兼容考虑,DHCP 也完全照顾了 BOOTP Client 的需求。 DHCP 的分配形式 首先,必须至少有一台 DHCP 工作在网络上面,它会监听网络的 DHCP 请求,并与客户端搓商 TCP/IP 的设定环境。它提供两种 IP 定位方式:
Automatic Allocation
自动分配,其情形是:一旦 DHCP 客户端第一次成功的从 DHCP 服务器端租用到 IP 地址之后,就永远使用这个地址。
Dynamic Allocation
动态分配,当 DHCP 第一次从 HDCP 服务器端租用到 IP 地址之后,并非永久的使用该地址,只要租约到期,客户端就得释放(release)这个 IP 地址,以给其它工作站使用。当然,客户端可以比其它主机更优先的更新(renew)租约,或是租用其它的 IP 地址。 动态分配显然比自动分配更加灵活,尤其是当您的实际 IP 地址不足的时候,例如:您是一家 ISP ,只能提供 200 个IP地址用来给拨接客户,但并不意味着您的客户最多只能有 200 个。因为要知道,您的客户们不可能全部同一时间上网的,除了他们各自的行为习惯的不同,也有可能是电话线路的限制。这样,您就可以将这 200 个地址,轮流的租用给拨接上来的客户使用了。这也是为什么当您查看 IP 地址的时候,会因每次拨接而不同的原因了(除非您申请的是一个固定 IP ,通常的 ISP 都可以满足这样的要求,这或许要另外收费)。当然,ISP 不一定使用 DHCP 来分配地址,但这个概念和使用 IP Pool 的原理是一样的。 DHCP 除了能动态的设定 IP 地址之外,还可以将一些 IP 保留下来给一些特殊用途的机器使用,它可以按照硬件地址来固定的分配 IP 地址,这样可以给您更大的设计空间。同时,DHCP 还可以帮客户端指定 router、netmask、DNS Server、WINS Server、等等项目,您在客户端上面,除了将 DHCP 选项打勾之外,几乎无需做任何的 IP 环境设定。 DHCP 的工作原理 根据客户端是否第一次登录网络,DHCP 的工作形式会有所不同。 第一次登录的时候:
寻找 Server。当 DHCP 客户端第一次登录网络的时候,也就是客户发现本机上没有任何 IP 数据设定,它会向网络发出一个 DHCP DISCOVER 封包。因为客户端还不知道自己属于哪一个网络,所以封包的来源地址会为 0000 ,而目的地址则为 255255255255 ,然后再附上 DHCP discover 的信息,向网络进行广播。 在 Windows 的预设情形下,DHCP discover 的等待时间预设为 1 秒,也就是当客户端将第一个 DHCP discover 封包送出去之后,在 1 秒之内没有得到响应的话,就会进行第二次 DHCP discover 广播。若一直得不到响应的情况下,客户端一共会有四次 DHCP discover 广播(包括第一次在内),除了第一次会等待 1 秒之外,其余三次的等待时间分别是 9、13、16 秒。如果都没有得到 DHCP 服务器的响应,客户端则会显示错误信息,宣告 DHCP discover 的失败。之后,基于使用者的选择,系统会继续在 5 分钟之后再重复一次 DHCP discover 的过程。
提供 IP 租用地址。当 DHCP 服务器监听到客户端发出的 DHCP discover 广播后,它会从那些还没有租出的地址范围内,选择最前面的空置 IP ,连同其它 TCP/IP 设定,响应给客户端一个 DHCP OFFER 封包。 由于客户端在开始的时候还没有 IP 地址,所以在其 DHCP discover 封包内会带有其 MAC 地址信息,并且有一个 XID 编号来辨别该封包,DHCP 服务器响应的 DHCP offer 封包则会根据这些资料传递给要求租约的客户。根据服务器端的设定,DHCP offer 封包会包含一个租约期限的信息。
接受 IP 租约。如果客户端收到网络上多台 DHCP 服务器的响应,只会挑选其中一个 DHCP offer 而已(通常是最先抵达的那个),并且会向网络发送一个DHCP request广播封包,告诉所有 DHCP 服务器它将指定接受哪一台服务器提供的 IP 地址。 同时,客户端还会向网络发送一个 ARP 封包,查询网络上面有没有其它机器使用该 IP 地址;如果发现该 IP 已经被占用,客户端则会送出一个 DHCPDECLINE 封包给 DHCP 服务器,拒绝接受其 DHCP offer ,并重新发送 DHCP discover 信息。 事实上,并不是所有 DHCP 客户端都会无条件接受 DHCP 服务器的 offer ,尤其这些主机安装有其它 TCP/IP 相关的客户软件。客户端也可以用 DHCP request 向服务器提出 DHCP 选择,而这些选择会以不同的号码填写在 DHCP Option Field 里面:
换一句话说,在 DHCP 服务器上面的设定,未必是客户端全都接受,客户端可以保留自己的一些 TCP/IP 设定。而主动权永远在客户端这边。
租约确认。当 DHCP 服务器接收到客户端的 DHCP request 之后,会向客户端发出一个 DHCPACK 响应,以确认 IP 租约的正式生效,也就结束了一个完整的 DHCP 工作过程。 如上的工作流程如下图:
DHCP 发放流程第一次登录之后: 一旦 DHCP 客户端成功地从服务器哪里取得 DHCP 租约之后,除非其租约已经失效并且 IP 地址也重新设定回 0000 ,否则就无需再发送 DHCP discover 信息了,而会直接使用已经租用到的 IP 地址向之前之 DHCP 服务器发出 DHCP request 信息,DHCP 服务器会尽量让客户端使用原来的 IP 地址,如果没问题的话,直接响应 DHCPack 来确认则可。如果该地址已经失效或已经被其它机器使用了,服务器则会响应一个 DHCPNACK 封包给客户端,要求其从新执行 DHCP discover。 至于 IP 的租约期限却是非常考究的,并非如我们租房子那样简单, 以 NT 为例子:DHCP 工作站除了在开机的时候发出 DHCP request 请求之外,在租约期限一半的时候也会发出 DHCP request ,如果此时得不到 DHCP 服务器的确认的话,工作站还可以继续使用该 IP ;然后在剩下的租约期限的再一半的时候(即租约的75%),还得不到确认的话,那么工作站就不能拥有这个 IP 了。至于为什么不是到租约期限完全结束才放弃 IP 呢?,对不起,小弟也是不学无术之人,没有去深究了,只知道要回答 MCSE 题目的时候,您一定要记得 NT 是这么工作的就是了。 要是您想退租,可以随时送出 DHCPLEREASE 命令解约,就算您的租约在前一秒钟才获得的。
跨网络的 DHCP 运作 从前面描述的过程中,我们不难发现:DHCDISCOVER 是以广播方式进行的,其情形只能在同一网络之内进行,因为 router 是不会将广播传送出去的。但如果 DHCP 服务器安设在其它的网络上面呢?由于 DHCP 客户端还没有 IP 环境设定,所以也不知道 Router 地址,而且有些 Router 也不会将 DHCP 广播封包传递出去,因此这情形下 DHCP DISCOVER 是永远没办法抵达 DHCP 服务器那端的,当然也不会发生 OFFER 及其它动作了。要解决这个问题,我们可以用 DHCP Agent (或 DHCP Proxy )主机来接管客户的 DHCP 请求,然后将此请求传递给真正的 DHCP 服务器,然后将服务器的回复传给客户。这里,Proxy 主机必须自己具有路由能力,且能将双方的封包互传对方。 若不使用 Proxy,您也可以在每一个网络之中安装 DHCP 服务器,但这样的话,一来设备成本会增加,而且,管理上面也比较分散。当然喽,如果在一个十分大型的网络中,这样的均衡式架构还是可取的。端视您的实际情况而定了。 DHCP封包格式
以下为各字段的简要说明: OP
若是 client 送给 server 的封包,设为 1 ,反向为 2 。 HTYPE
硬件类别,Ethernet 为 1 。
HLEN
硬件地址长度, Ethernet 为 6 。
HOPS
若封包需经过 router 传送,每站加 1 ,若在同一网内,为 0 。
TRANSACTION ID
DHCP REQUEST 时产生的数值,以作 DHCPREPLY 时的依据。
SECONDS
Client 端启动时间(秒)。
FLAGS
从 0 到 15 共 16 bits ,最左一 bit 为 1 时表示 server 将以广播方式传送封包给 client ,其余尚未使用。
ciaddr
要是 client 端想继续使用之前取得之 IP 地址,则列于这里。
yiaddr
从 server 送回 client 之 DHCP OFFER 与 DHCPACK 封包中,此栏填写分配给 client 的 IP 地址。
siaddr
若 client 需要透过网络开机,从 server 送出之 DHCP OFFER、DHCPACK、DHCPNACK 封包中,此栏填写开机程序代码所在 server 之地址。
giaddr
若需跨网域进行 DHCP 发放,此栏为 relay agent 的地址,否则为 0 。
chaddr
Client 之硬件地址。
sname
Server 之名称字符串,以 0x00 结尾。
file
若 client 需要透过网络开机,此栏将指出开机程序名称,稍后以 TFTP 传送。
options
允许厂商定议选项(Vendor-Specific Area),以提供更多的设定信息(如:Netmask、Gateway、DNS、等等)。其长度可变,同时可携带多个选项,每一选项之第一个 byte 为信息代码,其后一个 byte 为该项数据长度,最后为项目内容。 CODE LEN VALUE 此字段完全兼容 BOOTP ,同时扩充了更多选项。其中,DHCP 封包可利用编码为 0x53 之选项来设定封包类别:项值 类别
1 DHCP DISCOVER
2 DHCP OFFER
3 DHCP REQUEST
4 DHCPDECLINE
5 DHCPACK
6 DHCPNACK
7 DHCPRELEASE DHCP 的选项非常多,有空请查阅 RFC 或相关文献,并好好理解,这里不再叙述了。
DHCP 协议之 RFC 文件 RFC-951、RFC-1084、RFC-1123、RFC-1533、RFC-1534、RFC-1497、RFC-1541一DHCP服务的自动IP地址分配原理 DHCP使用客户端/服务器(Client/Server)模型。网络管理员建立一个或多个维护TCP/IP配置信息,并将其提供给客户端的DHCP服务器。服务器数据库包含以下信息。 网络上所有客户端的有效配置参数。 在指派到客户端的地址池中维护的有效IP地址,以及用于手动指派的保留地址。 服务器提供的租约持续时间。 通过在网络上安装和配置DHCP服务器,启用DHCP的客户端可在每次启动并加入网络时动态地获得其IP地址和相关配置参数。DHCP服务器以地址租约的形式将该配置提供给发出请求的客户端。 在以下3种情况下,DHCP客户机将申请一个新的IP地址。 计算机第一次以DHCP客户机的身份启动。 DHCP客户机的IP地址因某种原因(如租约期到了,或断开连接了)已经被服务器收回,并提供给其他DHCP客户机使用。 DHCP客户机自行释放已经租用的IP地址,要求使用一个新的IP地址。 DHCP客户机申请一个新的IP地址的总体过程如图6所示。其具体的过程如下。 (1)DHCP客户机设置为"自动获得IP地址"后,因为还没有IP地址与其绑定,此时称为处于"未绑定状态"。这时的DHCP客户机只能提供有限的通信能力,如可以发送和广播消息,但因为没有自己的IP地址,所以自己无法发送单播的消息。 (2)DHCP客户机试图从DHCP服务器那里"租借"到一个IP地址,这时DHCP客户机进入"初始化状态"。这个未绑定IP地址的DHCP客户机会向网络上发出一个源IP地址为广播地址0000的DHCP探索消息,寻找看哪个DHCP服务器可以为它分配一个IP地址。 (3)子网络上的所有DHCP服务器收到这个探索消息。各DHCP服务器确定自己是否有权为该客户机分配一个IP地址。 (4)确定有权为对应客户机提供DHCP服务后,DHCP服务器开始响应,并向网络广播一个DHCP提供消息,包含了未租借的IP地址信息以及相关的配置参数。 (5)DHCP客户机会评价收到的DHCP服务器提供的消息并进行两种选择。一是认为该服务器提供的对IP地址的使用约定(称为"租约")可以接受,就发送一个请求消息,该消息中指定了自己选定的IP地址并请求服务器提供该租约。还有一种选择是拒绝服务器的条件,发送一个拒绝消息,然后继续从第(1)步开始执行。 (6)DHCP服务器在收到确认消息后,根据当前IP地址的使用情况以及相关配置选项,对允许提供DHCP服务的客户机发送一个确认消息,其中包含了所分配的IP地址及相关DHCP配置选项。 (7)客户机在收到DHCP服务器的消息后,绑定该IP地址,进入"绑定状态"。这样客户机就有了自己的IP地址,就可以在网络上进行通信了。 二DHCP中继代理原理 在大型的网络中,可能会存在多个子网。DHCP客户机通过网络广播消息获得DHCP服务器的响应后得到IP地址。但广播消息是不能跨越子网的。因此,如果DHCP客户机和服务器在不同的子网内,客户机还能不能向服务器申请IP地址呢?这就要用到DHCP中继代理。DHCP中继代理实际上是一种软件技术,安装了DHCP中继代理的计算机称为DHCP中继代理服务器,它承担不同子网间的DHCP客户机和服务器的通信任务。 中继代理是在不同子网上的客户端和服务器之间中转DHCP/BOOTP消息的小程序。根据征求意见文档(RFC),DHCP/BOOTP中继代理是DHCP和BOOTP标准和功能的一部分。 1.路由器的DHCP/BOOTP中继代理支持 在TCP/IP网络中,路由器用于连接称做"子网"的不同物理网段上使用的硬件和软件,并在每个子网之间转发IP数据包。要在多个子网上支持和使用DHCP服务,连接每个子网的路由器应具有在RFC 1542中描述的DHCP/BOOTP中继代理功能。 要符合RFC 1542并提供中继代理支持,每个路由器必须能识别BOOTP和DHCP协议消息并相应处理(中转)这些消息。由于路由器将DHCP消息解释为BOOTP消息(例如,通过相同的UDP端口编号发送,并包含共享消息结构的UDP消息),具有BOOTP中继代理能力的路由器可中转网络上发送的DHCP数据包和任何BOOTP数据包。 如果路由器不能作为DHCP/BOOTP中继代理运行,则每个子网都必须有在该子网上作为中继代理运行的DHCP服务器或另一台计算机。如果配置路由器支持DHCP/BOOTP中继不可行或不可能,您可以通过安装DHCP中继代理服务来配置运行Windows NT Server 40或更高版本的计算机充当中继代理。 在大多数情况下,路由器支持DHCP/ BOOTP中继。如果您的路由器不支持,则应与路由器制造商或供应商联系以查明是否有软件或固件升级提供对该功能的支持。 2.中继代理的工作原理 中继代理将它连接的其中一个物理接口(如网卡)上广播的DHCP/BOOTP消息中转到其他物理接口连至的其他远程子网。图7显示了子网2上的客户端C是如何从子网1上的DHCP服务器1获得DHCP地址租约的。具体过程如下。 (1)DHCP客户端C使用众所周知的UDP服务器67号端口在子网2上以"用户数据报协议(UDP)"的数据报广播DHCP/BOOTP查找消息(DHCPDISCOVER)。67号UDP端口是BOOTP和DHCP服务器通信所保留和共享的。 (2)中继代理,在DHCP/BOOTP允许中继的路由器的情况下,检测DHCP/BOOTP消息头中的网关IP地址字段。如果该字段有IP地址0000,代理文件会在其中填入中继代理或路由器的IP地址,然后将消息转发到DHCP服务器1所在的远程子网1。 (3)远程子网1上的DHCP服务器1收到此消息时,它会为该DHCP服务器可用于提供IP地址租约的DHCP作用域检查其网关IP地址字段。 (4)如果DHCP服务器1有多个DHCP作用域,网关IP地址字段(GIADDR)中的地址会标识将从哪个DHCP作用域提供IP地址租约。 例如,如果网关IP地址(GIADDR)字段有10002的IP地址,DHCP服务器会检查其可用的地址作用域集中是否有与包含作为主机的网关地址匹配的地址作用域范围。在这种情况下,DHCP服务器将对10001和1000254之间的地址作用域进行检查。如果存在匹配的作用域,则DHCP服务器从匹配的作用域中选择可用地址以便在对客户端的IP地址租约提供响应时使用。 (5)当DHCP服务器1收到DHCPDISCOVER消息时,它会处理IP地址租约(DHCPOFFER)并将其直接发送给在网关IP地址(GIADDR)字段中标识的中继代理。 (6)路由器然后将地址租约(DHCPOFFER)转发给DHCP客户端。此时客户端的IP地址仍旧无人知道,所以它必须在本地子网上广播。同样,根据RFC 1542,DHCPREQUEST消息从客户端中转发服务器,而DHCPACK消息从服务器转发到客户端。
记得采纳啊NAT概述:网络地址转换(Network Address Translation, NAT)通过将内部网络的的私有IP 地址翻译成唯一的公网IP地址,使内部的网络可以连接到互联网等外部网络上NAT的优点§ 节省公有合法IP地址§ 处理地址交叉§ 增强灵活性§ 安全性(隐藏内部网络的细节,避免来自外部网络的攻击)NAT的缺点§ 延迟增大§ 配置和维护的复杂性§ 不支持某些应用NAT的类型:静态转换(Static Translation)动态装换(Dynamic Translation)端口多路复用(Port Address Translation )NAT的基本原理:改变IP包头,使目的地址、源地址或两个地址在包头中被不同地址替换NAT的术语:内部局部IP地址(inside local address):在内部网络中分配给主机的私有ip地址,也就是说,在内部的所有私有地址内部全局IP地址(inside global IP address ):一个合法的IP地址,它对外代表一个或者多个内部局部IP地址,也就是说,在内部的私有地址通向外部的一个网关,即分配给内部私有地址的公有地址,能代替内部的私有地址外部全局IP地址(outside global IP address):由其所有者给外部网络上的主机分配的IP地址,也就是说,在外部的所有私有地址外部局部IP地址(outside local IP address):外部主机表现在内部网络的IP地址,也就是说,在外部的主机分配的一个能代替所有私有的地址NAT的个作原理:以下图来讲原理:NAT工作原理拓扑图首先,我们要清楚,在局域网内部的私有地址是不能访问外网的,必须通过转换成公有地址才可以访问Internet,以上所图,是两个公司之间的Inter网络互相交流,下面来谈谈它的工作原理19216810网络的PC1想要访问192168100网络的User11PC1向RA(网关)发送请求,告诉自己的私有IP地址和MAC地址,并且要求自己要到达192168100网络的User1主机2RA收到请求后,把PC1的源IP地址进行转换,变成内部全局地址,即公有地址20216581,并且为PC1制定一个随机产生的端口号(来识别某台主机),发送到Inter网3Inter网络收到了内部全局IP地址的请求,之间进行路由选择,被RB接收,RB通过查看RA发送过来的内部全局IP地址和端口号等信息,直接发送给192168100网络的网关4网关路由器RB收到了信息,根据对方发过来的目标主机信息,把数据传输给192168100网络的User1主机5根据ICMP协议,user1主机需要回应,对数据进行相应的处理,把数据封装后发送给网关6网关把user1的私有IP地址转换成外部局部IP地址,即公有地址20216582,通过这个公有地址,转发到路由器RA7RA收到数据包,查看自己缓存里的对应的主机和端口,并对19216810网络的PC1进行转发思考:如果两个局域网的主机网络是一样的怎么办呢?这样就构成了地址交叉,我们知道,在一个网络或者子网中,IP地址一样会产生冲突,就那上图来说把,假如192168100网络也是19216810网络,两个公司合并了,那该怎么去解决这个IP冲突呢?其原理和上述原理一样,只不过多了个地址交叉的过程,在这里两个网关,其中的一个充当一个善意的欺骗者,告诉网络中一个假的消息,其实自己是很清楚的,只是把自己当成了一个代理作用,帮别人转发信息NAT的几个用法:复用内部LAN地址(PAT):通过允许对TCP连接或者UDP会话进行转换,从而达到节省内部全局地址集中的合法地址TCP负载均衡:利用NAT技术,用对外的IP地址来代表多个同样的服务器
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)