我们都知道CPU和GPU,如果你以前DIY电脑的话,你将需要在这两样硬件的性价比上权衡。他们的结构大致如下图:
CPU是高级的,因为要处理很多复杂的事物。而GPU有很大的逻辑运算空间,同时能处理的事物比较单一。从技术含量上看,英特尔无论如何比novidia投入更多,CPU比GPU更有科技含量,但科技的彼岸未必如你预期,GPU并联运算能力的开发,一切都变得不同。正因为GPU简单,其运算能力可以如搭积木一样提高。分布式的GPU。
人工智能靠什么?我们很多年前开始说人工智能时候就说了三点:算法、大数据和并行运算神经网络。为了推进人工智能发展,算法是公开的,数据不用说,各显神通,那么最重要的人工智能的硬件技术就是并行运算的能力。
这个时候技术先走到FPGA,再到ASIC芯片也就是AI芯片。这个过程实质上简单明了。FPGA,通用性不错,但是能耗和运算能力不佳。而更加专业的ASIC芯片可以提升这个能力,使得开发的芯片重点用于人工智能。现阶段很多无人机,高清视频等都在使用FPGA的芯片。但是随着数据运算级别的增加,现阶段FPGA的运算和能耗无法满足更高层次专业人工智能的需求。
AI芯片有两种,一种是云端芯片,大服务器,高能耗,集中到云端去计算数据。另一种是终端芯片,要体积小,能耗低,哪里使用就在哪里获得数据直接运算,如今基本上芯片谷歌重头是云端AI芯片,而英特尔是终端AI芯片。谷歌的云端AI芯片组成服务器,然后谷歌出租这些AI的运算能力(人工智能时代的云计算)。
你发现了吗?整个AI芯片领域已经出现了产品,但是需求在进一步进化。这里面最重要的核心,是性能和能耗。这也是集成电路提升的方向。Luminous是个7人小公司,这个公司有一个与众不同的光通信技术(硅光子技术),这样在服务器内部传输就大大加快,从而提升性能。
这家企业阶段性技术目标并不高,就是替代谷歌AI云端服务器的芯片。为什么谷歌要选择他的芯片,当然需要他的技术比谷歌自己研发出来的芯片要好,既然谷歌是出售云端AI服务器,那么服务器性能就代表其印钞的能力。谷歌现阶段服务器是使用3000块Tensor Processing Unit AI芯片搭建的电路板。而未来如果成功,Luminous将成为一家专业的AI芯片提供商。
国外很多专业性很强的芯片公司就是这样开始的,很多巨头喜欢投资初创公司。他们相对来说技术路线清晰,专注性强,运营成本低。所以比尔盖茨投资AI芯片公司Luminous,就是因为在AI芯片这个领域缺乏专业性很强的巨头,对于很多公司,芯片你和英特尔竞争机会不大,AI芯片是个弯道超车的机会。
文/观察者网 谷智轩
全球估值最高的人工智能(AI)芯片独角兽诞生,摘取这一头衔的仍是一家中国公司。
2月27日,AI芯片初创企业地平线(Horizon Robotics)对观察者网透露,其获得6亿美元(约合40亿人民币)左右的B轮融资,估值达30亿美元(约合200亿人民币)。
去年6月,另一家中企寒武纪(Cambricon Technologies)完成数亿美元B轮融资,投后整体估值为25亿美元(约合167亿人民币),彼时成为全球AI芯片创业公司的“领头羊”。
如此看来,地平线已超越寒武纪,成为AI芯片领域“最值钱”的独角兽企业。
需要提及的是,本轮融资的领投方中,世界第三大半导体供应商韩国SK海力士(SK Hynix)赫然在列,而该领域的“老大”英特尔(Intel)早在2017年就领投地平线的A+轮融资。这意味着,全球前三的半导体巨头中,有两家已成为地平线的重要股东。
地平线的“征程10处理器” 图自地平线网站
成立已三年
地平线方面对观察者网表示,B轮融资由SK中国、SK海力士以及数家中国一线 汽车 集团(与旗下基金)联合领投。
参与的其他机构与战略合作伙伴包括:中国泛海控股集团旗下泛海投资、民银资本、中信里昂旗下CSOBOR基金和海松资本等。同时,本轮融资还获得了包括晨兴资本、高瓴资本、云晖资本和线性资本等现有股东加持。
这也是继2017年下半年获得由英特尔领投的超过1亿美元的A+轮融资之后,成立仅三年多的地平线再次获得重量级投资。
该公司还称,本次国内数家一线 汽车 集团给予地平线的上亿美元投资,也成为中国车企目前在AI领域最大规模的投资。
地平线创始人、CEO余凯对观察者网表示,“本次融资引入的重要战略伙伴和资源将进一步加速地平线的研发和商业化步伐。”
另外,SK中国总裁吴作义指出,“地平线在AI处理器以及自动驾驶领域的产品与方案令人印象深刻。”
此前供职于百度的余凯在2013年发起了百度自动驾驶项目。不过,2015年5月,他从百度离职,并于同年7月创立地平线。
余凯资料图 图自视觉中国
在获得最新一轮融资前,地平线也晒出了一份“成绩单”。
2017年,地平线大规模流片(试生产)并发布了中国首款边缘AI处理器——用于智能驾驶的地平线“征程”系列处理器与用于AIoT(人工智能物联网)边缘计算的地平线“旭日”系列处理器。
2018年,该公司依托其软硬结合AI处理器技术,相继发布了Matrix自动驾驶计算平台与和地平线XForce边缘AI计算平台。
目前,Matrix自动驾驶计算平台已向世界顶级L4自动驾驶厂商大规模供货。2018年底,该公司推出依托Matrix计算平台的Navnet众包高精地图采集与定位方案等软硬一体解决方案,并已开始逐步落地。
在智能驾驶领域,地平线的合作伙伴包括奥迪、博世、长安、比亚迪、上汽、广汽等。
另据路透社报道,地平线和奥迪合作开发的软硬件,帮助后者获得了在中国无锡公路上测试自动驾驶的执照。
地平线智能驾驶演示视频截图
中企尚待追赶行业巨头
观察者网同时注意到,尽管地平线已经获得众多资本的青睐,但在AI芯片领域,中企尚待追赶行业巨头。
市场研究机构Compass Intelligence对全球100多家芯片公司进行了评估,最终的AI芯片公司排名有24家企业入围,前3强为英伟达(Nvidia)、英特尔和IBM。华为是排名最高的中国公司,位列第12名。
地平线也跻身这份榜单,排名第24名,上文提到的寒武纪则领先其1位。
其他入围的中国企业还包括联发科(MediaTek)、Imagination、瑞芯微(Rockchip)、芯原(Verisilcon),分列第14、15、20、21名。
图自Compass Intelligence
本文系观察者网独家稿件,未经授权,不得转载。
随着定制芯片愈演愈烈,除却芯片厂商本身,谁还将从中获利?
去年我们报道过,腾讯成立了一家新公司,发力AI芯片。时隔一年,其庐山真面目乍现。经过半导体行业观察多方求证,我们了解到, 目前腾讯有一个大概50人规模的团队在做芯片,其AI芯片已经流片了 。如今AI领域已经成为世界 科技 巨头争夺的制高点,各大云厂商都已经陆续交出了自家的定制芯片,诚如百度的昆仑芯片、阿里含光、亚马逊、谷歌、微软等等,他们能有什么坏心眼?他们纯粹是为了得到更便宜或者是比第三方性能更好的芯片。随着定制芯片愈演愈烈,除却芯片厂商本身,谁还将从中获利?
我们今天所知道的基于单元的ASIC业务诞生于20世纪80年代初,是由LSI Logic和VLSI技术等公司率先开创的。如今这一趋势发展更加迅猛,定制芯片市场变得大众化。突然之间,任何有远见和合理预算的人都可以制造定制芯片。其结果是半导体技术在各种定制应用中无处不在,产品变得更小、更智能、更复杂。尤为代表的就是云计算厂商们,现在几乎全球所有的云厂商都进入了造芯的行列,而且都在优先考虑定制设计。这是一场芯片界豪华的盛宴,一场属于云厂商独飨的盛宴。
其实在国内BAT造芯行列,腾讯是相对落后的一员。国内如百度早在2010年就启动了FPFA AI加速项目,2018年发布了昆仑芯片,如今其昆仑1已出货2万片,而且昆仑2也将在今年面世。鸿鹄芯片的表现也不斐,这两年,搭载鸿鹄芯片的小度更是占据了智能音箱出货量的头把交椅。
阿里巴巴虽然自2015年才开始与中天微合作开发云芯片,但是阿里的造芯车轮却走的飞快。收购中天微,将其与达摩院合并成为平头哥半导体,先后交出玄铁910和含光800芯片两份答卷,打造端云一体全栈产品系列。再者其投资的芯片企业也是涉猎广泛,几乎将AI芯片初创企业一网打尽。
关于腾讯,我们都知道,其投资了AI芯片公司燧原 科技 ,而且已经连续投资了4轮,可见对燧原 科技 的看重。燧原 科技 的表现也着实不错,它只用了18个月便完成了研发,并一次性流片成功,实现从0到1的突破,并且是原创芯片架构,原创指令集。其实阿里巴巴一开始也是先入股投资中天微,后来将其收购了,这点如果放到腾讯身上来看,腾讯收购燧原 科技 也不失为一个芯片自研的捷径。
不过国内云厂商造芯的策略在某些程度上还是在仿照亚马逊等国外厂商的打法,让我们再来看看国外这些云厂商的芯片研发思路。
在国外云厂商中,尤以亚马逊走的最前列。亚马逊在2015年收购了以色列的一家小型芯片设计商Annapurna Labs,自那时起,便开始了漫漫芯片长征路。来自Amazon和Annapurna Labs的工程师制造了Arm Graviton处理器和Amazon Inferentia芯片。其一开始研发的Graviton芯片最初仅在特殊情况下使用,但现在其已经可以与传统上用于数据中心的英特尔芯片相媲美,这标志着该行业的潜在转折点。
如今,在迈向控制其关键技术组件的重要一步中,亚马逊正在开发网络芯片,为在网络上传送数据的硬件交换机提供动力。据说这些定制芯片可以帮助亚马逊改善其内部基础设施以及AWS,还可以帮助其解决自身基础架构中的瓶颈和问题,特别是如果他们还定制构建在其上运行的软件时。
微软已经为Azure数据中心及其HoloLens耳机创建了芯片设计。最近其在以色列悄然开设了一个芯片开发中心,投入到网络芯片等产品的研发。微软在以色列开发的有趣产品之一是SmartNIC,它是一种智能网卡,可加快公司数据中心服务器中的数据传输速度。该卡本身可以承担一些必要的任务,从而减轻了服务器中央处理单元的负担。Microsoft当前使用Mellanox的SmartNIC产品。但是它的长期目标是用自己的产品替换那些产品。
Google于2016年宣布了其首个定制机器学习芯片Tensor Processing Units(TPU)。Google目前正在提供第三代TPU作为云服务。Google这些年越来越重视芯片,已聘请英特尔前高管Uri Frank来领导其定制芯片部门。定制芯片一直是Google构建高效计算系统战略不可或缺的一部分。此外,设计定制服务器芯片将有助于谷歌云与微软Azure和AWS竞争。
这些 科技 巨头自研芯片的这种趋势在一定程度上反映出,目前的 科技 巨头与过去的数据中心运营商有多么不同。过去的数据中心运营商没有资源投入数亿美元设计自己的芯片。现在定制芯片的激增可以进一步降低先进计算产品的成本并引发创新,这对每个人都有利,不止他们自己,还有为之提供服务的厂商们。
云厂商陆续加入定制化芯片开发这个新行列,将衍生出更多的业务需求。那么,所有的ASIC资金将流向何方? 这其中明显的受益者就有芯片设计服务、EDA/IP需求、代工需求等等,尤其是那些耳熟能详的知名大厂商,然而还有一些隐藏不被大家熟知的设计服务业的受益者 。总而言之,处于这些需求赛道中厂商们都可能从定制芯片项目中获利。
首先,这些造芯新进者缺乏半导体设计相关的积累,势必会路生。因为芯片开发流程众多,包括产品定义、前端电路设计、后端物理实现、制造工艺、封装等多个环节,而且还常常需要组合多种不同功能的IP,使得设计难度进一步加大,并不是所有IC设计公司对这些技术都有深入的了解。于是就需要设计服务厂商的帮助。
在这其中,如博通、Marvell、联发科、Socionext(富士通和松下的LSI业务组合)等提供设计服务的公司将成为明确的受益者。尤其是博通,据了解,国内外大多数知名的厂商都在使用博通的设计服务。博通在全球芯片设计服务方面都占据很高的比例。
JP Morgan分析师Harlan Sur指出,博通不只协助设计芯片,也提供芯片生产、测试、封装的关键知识产权。博通已经在网络设备和无线芯片领域拥有大量业务,每年可能从谷歌和其他公司获得高达10亿美元的收入,用于制造运行服务器的定制芯片。博通一直默默协助Google TPU研发生产,据外媒报道,谷歌的第四代TPU芯片也已获得博通的服务设计,并开始与Alphabet旗下的谷歌设计第五代处理器,该处理器将使用更小的5nm晶体管设计。
始于谷歌,博通现在也在帮助Facebook,微软,Ericsson,诺基亚,阿里巴巴,SambaNova(斯坦福大学学者组建的初创公司)和其他大型公司提供了定制芯片,可用于多种用途。
Marvell的ASIC定制业务也越来越庞大。2019年5月,Marvell也宣布与格芯已达成协议,将收购格芯专用集成电路(ASIC)业务Avera Semiconductor。据悉,该业务单元帮助芯片设计师研发全定制芯片中的半定制芯片。Marvell希望通过面向5G运营商,云数据中心,企业和 汽车 应用的新5nm产品来撼动定制ASIC芯片市场。
另一方面,Marvell几年来一直在销售基于ARM技术的称为ThunderX的芯片家族。在向微软和其他公司销售这种芯片数年之后,Marvell现在被要求为微软定制一个版本,Sur相信,这是一款云计算芯片。而且微软正在与Marvell合作开发其下一代ThunderTh3(TSMC 7纳米)项目。
联发科早在2011年就开始提供ASIC设计服务,这几年也加强了ASIC设计服务的业务。2018年初,联发科正式宣布大力拓展ASIC设计服务业务,服务对象主要面向系统厂商和IC设计公司。联发科ASIC设计服务部门是一个独立部门,据悉,其ASIC设计服务最先看好的就是向产业链上游芯片设计板块渗透的互联网巨头们,而这些互联网或终端巨头引导着上游芯片业的走向,也占据着产业链整体利润的大头儿。这些对于未来的IC设计服务业务来说,具有很大的吸引力。
创意电子(GUC)是一家客制化IC服务厂商,背靠第一大股东台积电,其封装技术较为先进。创意电子独特地结合先进技术、低功耗与内嵌式CPU设计能力,且搭配与台积公司(TSMC)以及各大封测公司密切合作的生产关键技术,适合应用于先进通讯、运算与消费性电子的ASIC设计。
世芯电子(Alchip)亦从事ASIC服务。据其官网介绍,世芯电子能专精、快速交付最先进的ASIC方案给客户,在16纳米、12纳米、7纳米等节点制程技术上其皆是最快成功实现的业者,拥有可靠的实证纪录。
科创板上市公司芯原微电子(上海)股份有限公司(芯原股份)是一家依托自主半导体IP,为客户提供平台化、全方位、一站式芯片定制服务和半导体IP授权服务的企业。据其官网介绍,芯原在图形处理器、神经网络处理器、视频处理器等方向有丰富的IP组合。
摩尔精英(MooreElite)则为客户提供从芯片定义到产品实现的全流程设计服务,与多家IP供应商和十几家晶圆代工厂紧密合作,为客户打造一个全面的设计云平台,基于长期打磨验证的设计流程和方法学,在边缘AI、云端大数据训练、消费电子、工业系统、网络计算SoC等不同应用领域有多年的技术积淀和可产品化的解决方案。
中国2000多家芯片公司,大多在摸着石头过河,可以说,这是一个非常有潜力的市场,据Gartner参考文献预测2020年ASIC市场将约为$ 27B。专注的高端ASIC供应商将带来巨大的商机。
除了芯片设计服务,这些芯片厂商大多使用Arm的IP,ARM可通过使用其IP开发定制处理器来收取许可和特许权使用费收入。据Axios的一篇报道,谷歌正在研发一款处理器,该处理器将为其2021 Pixel 手机和未来的chromebook提供动力。这款代号为Whitechapel的处理器据称拥有8颗ARM CPU内核,采用了三星的下一代5纳米制造工艺,并包含用于提高谷歌助手性能的专用电路。
定制芯片还要一些EDA/IP厂商来提供辅助性芯片设计服务,Cadence以及Synopsys毋庸置疑的可从中获利。早在2018年,Cadence就与Google,Microsoft,Amazon合作开发基于云的EDA工具,这些工具可以在云中运行,并且可以提供高水平的峰值性能。Synopsys也与Google Cloud合作以广泛扩展基于云的功能验证。
而所有这些芯片的设计开发,对代工厂来说也是一大好消息。诸如台积电和三星等芯片代工厂已经使从事定制芯片项目的 科技 公司能够轻松访问尖端的制造工艺。台积电已在生产谷歌的TPU和微软的HPU等芯片。去年11月,据日经亚洲报道,台积电正在与Google和AMD合作开发一种新的芯片封装技术3DFabric,该服务包含一系列3D硅堆叠和封装技术。预计首批SoIC小芯片将在2022年投入量产。台积电希望向其主要客户提供其先进的后端服务。
台积电此举当然不是在试图取代传统的芯片封装厂商,而是旨在为金字塔顶端的那些高端客户提供服务,以便笼络住财力雄厚的芯片开发商。当年台积电凭借封装服务拿下了苹果的大单,直到现在,台积电的大部分芯片封装收入仍来自苹果。如今在云计算任务比以往更加多样化和苛刻的时代下,定制芯片对高端封装的要求更高。如果能为谷歌、亚马逊等这些厂商提供高端服务的话,或许将是另外一笔大收入。
不止云厂商,还有苹果的M1芯片和特斯拉的FSD芯片等等,ASIC芯片已是大势所趋。设计ASIC芯片需要大量的资金投入,并且需要频繁更新以确保采用新技术和制造工艺。 科技 巨头将为这项技术而战,ASIC服务商们也不轻松。
本文编译自zdnet据知名芯片分析公司Linley Group称,智能手机等边缘设备上的人工智能推理的芯片吸引了越来越多的初创公司和风险投资。
“有更多新的初创公司不断涌现,并继续试图与众不同。”Linley Group的高级分析师Mike Demler在接受 ZDNet 电话采访时表示。
在最近一次于 10 月在加州圣克拉拉举行的线上线下同步活动中,包括Flex Logix、Hailo Technologies、Roviero、BrainChip、Syntiant、Untether AI、Expedera 和 Deep AI 等初创公司分别谈论他们的芯片设计。
Demler 和团队定期编写一份题为《深度学习处理器指南》的研究报告,最新版本预计将于本月发布。 “在这个最新版本中,我统计了 60 多家芯片供应商。”他告诉 ZDNet。
Edge Cortix
边缘AI已成为一个笼统的术语,主要指不在数据中心内的所有事物,尽管它可能包括位于数据中心边缘的服务器。它的范围从智能手机到使用谷歌TinyML 框架微瓦功率级别的嵌入式设备。
Demler 说,其中功耗从几瓦到 75 瓦不等的边缘AI芯片,是市场中最拥挤的部分,通常采用可插拔 PCIe 或 M2 卡的形式。 (75 瓦是 PCI 总线限制。)
“PCIe 卡是市场的热门部分,用于工业人工智能、机器人技术、交通监控。”他解释说。 “你已经看到了 Blaize、FlexLogic 等公司——其中很多公司都在追求这一领域。”
但真正的低功耗也相当活跃。“我想说的是 tinyML 领域也很火爆,从几毫瓦到几微瓦不等。”
Hailo软件工具链
大多数器件都是专用于人工智能的“推理”阶段。
推理发生在神经网络程序经过训练之后,这意味着它的可调参数已经完全开发到足以可靠地形成预测并且可以投入应用。
Demler说,初创公司面临的最初挑战实际上是从一个漂亮的PPT到工程中实际应用。许多人从FPGA仿真开始,然后转向销售成品SoC,或者将他们的设计变为可整合到客户SoC中的IP。
“我们仍然看到许多初创公司对冲他们的赌注,或者尽可能多地追求灵活的收入模式。”Demler 说,“首先在 FPGA 上进行演示,并提供他们的核心 IP 以进行许可。一些初创公司还提供基于 FPGA 的版本作为产品。”
Roviero
市场上有数十家供应商,因此真正点亮的芯片,也面临着各种竞争与挑战。
“很难总结出各家的真正不同。”Demler说。 “我已经看了几十个宣称‘世界第一’或‘世界最好’的PPT。”
有些公司一开始采用了不同的方法,以至于他们很早就脱颖而出,但花了一些时间才结出硕果。
澳大利亚悉尼的 BrainChip Holdings 在 2011 年就开始使用芯片来处理脉冲神经网络,这是一种人工智能的神经形态方法,旨在更准确地模拟人脑的功能。
多年来,该公司展示了其技术如何执行任务,例如使用机器视觉识别赌场地板上的扑克筹码。
“BrainChip 一直在坚决低追求这种尖端架构。”Demler 说。 “它具有独特的能力,它可以真正在设备上学习”,从而进行训练和推理。
FlexLogix
从某种意义上说,BrainChip 是所有初创公司中走得最远的:它上市了。其股票在澳大利亚证券交易所上市,股票代码为“BRN”,去年秋天,该公司发行了美国存托股票,在美国场外交易市场交易,股票代码为“BCHPY”。自那以后,股票的价值已经翻了三倍多。
BrainChip 刚刚开始产生收入。该公司在 10 月份推出了适用于 x86 和 Raspberry Pi 的“Akida”处理器的迷你 PCIe 板,并于上个月宣布了新的 PCIe 板,价格为 499 美元。该公司在 12 月季度的收入为 110 万美元,高于上一季度的 10 万美元。 年度总收入250 万美元,运营亏损 1400 万美元。
事实证明,其他一些奇特的方法很难在实践中实现。芯片初创公司 Mythic 成立于 2012 年,总部位于德克萨斯奥斯汀,一直在寻求使用模拟技术实现AI的新颖路线,它不是处理 1 和 0,而是通过 *** 纵实时的模拟电信号进行计算。
“Mythic 已经生产了一些芯片,但还没有公布我们所知道的任何设计导入。”Demler观察到。“每个人都同意,理论上,模拟应该具有功率效率优势,但在商业上实现这一点要困难得多。”
ArchiTek
Demler 指出,另一家在处理器大会上展示的初创公司 Syntiant 也是以模拟芯片设计方法开始,但认为模拟没有提供足够的功耗优势,并且开发周期更长。
加州欧文市的 Syntiant 成立于 2017 年,专注于非常简单的物体识别,它可以在功能机或可穿戴式设备上以低功耗运行。
“在功能机上,您不需要应用处理器,因此 Syntiant 解决方案是完美的。”Demler说道。
Demler 表示,无论任何一家初创公司是否成功,AI的实用性都意味着AI加速将作为一种芯片技术持续存在。
“人工智能在许多领域变得如此普遍,包括 汽车 、嵌入式处理、物联网、移动、PC、云等,专用加速将变得司空见惯,就像 GPU 用于图形一样。”
Expedera
尽管如此,Demler 说,在通用 CPU、DSP 或 GPU 上运行某些任务会更有效率。这就是为什么英特尔和英伟达以及其他公司正在使用特殊指令(例如矢量处理)来继续他们的架构。
只要风投市场现金充裕,养料丰富,一千朵鲜花都可以绽放,市场可以有不同的方法进行 探索 。
“仍然有如此多的风险投资资金进入这一市场,我对这些增量感到震惊。”Demler说。
Demler 指出,成立于 2018 年的加州圣何塞的 Simaai 获得了巨额融资,该公司正在开发其所谓的“MLSoC”,专注于降低功耗。该公司在 B 轮融资中获得了 8000 万美元。
另一个是特拉维夫的 Hailo Technologies,该公司成立于 2017 年,根据 FactSet 的数据,该公司已母鸡了 3205 亿美元,其中包括最近一轮的 1 亿美元,据称估值为 10 亿美元。
“来自中国的数据,如果属实,将更加惊人。”Demler说,风投资金看起来将暂时继续。 “在风险投资界决定投资其他东西之前,你会看到这些公司将继续获得热捧。”
在某个时候,会发生一次洗牌,但那一天何时到来尚不清楚。
“一些公司最终会离开。”Demler沉思道。“无论是从现在开始的 3 年还是 5 年后,我们都会在这个领域看到更少的公司。”
国内服务器厂商排名:
1、华为
华为是全球领先的信息与通信技术解决方案供应商,专注于ICT领域,坚持稳健经营、持续创新、开放合作,在电信运营商、企业、终端和云计算等领域构筑了端到端的解决方案优势,为运营商客户、企业客户和消费者提供有竞争力的ICT解决方案、产品和服务,并致力于使能未来信息社会、构建更美好的全联接世界。
2、联想
联想集团成立于1984年。公司主要生产台式电脑、服务器、笔记本电脑、打印机、掌上电脑、主机板、手机等电子产品。
3、浪潮
浪潮集团是中国领先的计算平台与IT应用解决方案供应商,同时,也是中国最大的服务器制造商和服务器解决方案提供商。
4、曙光
曙光公司是一家在科技部、信息产业部、中科院大力推动下,以国家“863”计划重大科研成果为基础组建的高新技术企业。光始终专注于服务器领域的研发、生产与应用,在互联网、金融、电信、石油、科研、电力等多个行业有着大量成功应用。
5、亿时空
深圳亿时空于1997年成立。多年以来专注于服务器和图形工作站的应用于推广,为企业产品赢下良好口碑。更是通过多年的努力,现已成为全国服务器、工作站领域里优秀的供应商之一。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)