1、并不是所有的地方都需要使用read commit的加锁级别,你从application中设置一句sqlcalock="RU", 使用脏读,这样就可以去掉大多数不必要的SELECT行锁。然后在一定要读最新数据的地方,把SQLCA。LOCK改为RC,用完后再改回来。
这样就避免了几乎80%的阻塞。
2、对于由于行更新,或者其他UPDATE导致的锁,一般数据库会自己协调,在事务比较长的情况下,这需要你对原来的程序做适当的修改。把长事务变为几个小的事务,在事务中做更新 *** 作,不要插入用户的交互。这是系统的设计原则。
如果你的系统对事务的要求不严格,又不想改动原来的程序,办法更简单,在前面
SQLCA。LOCK的基础上,加句SQLCA。AUTOCOMMIT=TRUE,这样每数据修改自动提交,就可以避免大多数由于更新产生的死锁和阻塞。
3、最后要对付的是刚才说的被大量应用频繁访问的表(HOT TABLE),如果你的系统允许使用RU加锁级别,那么不用太考虑,因为SELECT已经不会导致锁定了。
但是如果你不能使用RU方式(1里头提到的办法),
那么要采用这样的手段:
使用索引把更新锁,SELECT锁来分开,同时也避免SQLSERVER傻傻为了性能的原因把行锁升级为表锁。
具体办法是建立一个索引,如果可以的话使用聚集索引,因为聚集索引采用的是类似HASH的检索方式,这样当查找索引的时候,就不需要访问数据表了。
另一种办法,是将你SELECT语句中要检索的数据都加到索引中,例如你检索NAME,SEX,AGE,如果你把三个数据都加入了索引,这就意味着SELECT语句只要找到索引,就已经找到了最后要选取的数据(从索引中),这样自然不会去LOCK表了。这样做的时候要针对你的程序仔细选择索引,否则把索引变成了表的一个备份就没有意义了。下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。
1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁 *** 作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:
●索引中不包括一个或几个待排序的列;
●group by或order by子句中列的次序与索引的次序不一样;
●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序 *** 作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
4.避免相关子查询
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序 *** 作,而且在其他方面还能简化优化器的工作。例如:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
AND custpostcode>“98000”
ORDER BY custname
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
ORDER BY custname
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。
7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的 *** 作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。MySQL 在崩溃恢复时,会遍历打开所有 ibd 文件的 header page 验证数据字典的准确性,如果 MySQL 中包含了大量表,这个校验过程就会比较耗时。 MySQL 下崩溃恢复确实和表数量有关,表总数越大,崩溃恢复时间越长。另外磁盘 IOPS 也会影响崩溃恢复时间,像这里开发库的 HDD IOPS 较低,因此面对大量的表空间,校验速度就非常缓慢。另外一个发现,MySQL 8 下正常启用时居然也会进行表空间校验,而故障恢复时则会额外再进行一次表空间校验,等于校验了 2 遍。不过 MySQL 80 里多了一个特性,即表数量超过 5W 时,会启用多线程扫描,加快表空间校验过程。
如何跳过校验MySQL 57 下有方法可以跳过崩溃恢复时的表空间校验过程嘛?查阅了资料,方法主要有两种:
1 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳过表空间校验。实际测试的时候设置 innodb_force_recovery =1,也就是强制恢复跳过坏页,就可以跳过校验,然后重启就是正常启动了。通过这种临时方式可以避免崩溃恢复后非常耗时的表空间校验过程,快速启动 MySQL,个人目前暂时未发现有什么隐患。2 使用共享表空间替代独立表空间这样就不需要打开 N 个 ibd 文件了,只需要打开一个 ibdata 文件即可,大大节省了校验时间。自从听了姜老师讲过使用共享表空间替代独立表空间解决 drop 大表时性能抖动的原理后,感觉共享表空间在很多业务环境下,反而更有优势。
临时冒出另外一种解决想法,即用 GDB 调试崩溃恢复,通过临时修改 validate 变量值让 MySQL 跳过表空间验证过程,然后让 MySQL 正常关闭,重新启动就可以正常启动了。但是实际测试发现,如果以 debug 模式运行,确实可以临时修改 validate 变量,跳过表空间验证过程,但是 debug 模式下代码运行效率大打折扣,反而耗时更长。而以非 debug 模式运行,则无法修改 validate 变量,想法破灭。数据库数据表的链接形式(是否链接表在另外的一个服务器上)、数据库打开的方式(是否独占 是否有人共享打开了)、是否 一个查询 过于复杂(多表的查询 可以先建立分表查询 然后 再对这些分表查询 进行合并查询速度会相对快一些)……
计算机的配置 是否有足够的 运算内存可供使用 等等……
总之 原因很多 要视你的工作环境来判断……看下延时。
如果延时正常的话,然后查询下连接数,检查是不是创建了大量连接。
再没有问题就尝试sqlplus直连。正常情况数据库主机通信不是很大,一般是程序中有大量创建连接引起的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)