问题二:大数据可以做什么 用处太多了
首先,精准化定制。
主要是针对供需两方的,获取需方的个性化需求,帮助供方定准定位目标,然后依据需求提 品,最终实现供需双方的最佳匹配。
具体应用举例,也可以归纳为三类。
一是个性化产品,比如智能化的搜索引擎,搜索同样的内容,每个人的结果都不同。或者是一些定制化的新闻服务,或者是网游等。
第二种是精准营销,现在已经比较常见的互联网营销,百度的推广,淘宝的网页推广等,或者是基于地理位置的信息推送,当我到达某个地方,会自动推送周边的消费设施等。
第三种是选址定位,包括零售店面的选址,或者是公共基础设施的选址。
这些全都是通过对用户需求的大数据分析,然后供方提供相对定制化的服务。
应用的第二个方向,预测。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。
从具体的应用上,也大概可以分为三类。
一是决策支持类的,小到企业的运营决策,证券投资决策,医疗行业的临床诊疗支持,以及电子政务等。
二是风险预警类的,比如疫情预测,日常健康管理的疾病预测,设备设施的运营维护,公共安全,以及金融业的信用风险管理等。
第三种是实时优化类的,比如智能线路规划,实时定价等。
问题三:什么是大数据,大数据可以做什么 大数据,指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
大数据可以对;数据进行收集和存储,在这基础上,再进行分析和应用,形成我们的产品和服务,而产品和服务也会产生新的数据,这些新数据会循环进入我们的流程中。
当这整个循环体系成为一个智能化的体系,通过机器可以实现自动化,那也许就会成为一种新的模式,不管是商业的,或者是其他。
问题四:大数据是做什么的 大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据 。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB,而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。
数据类型繁多(Variety)。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
价值密度低(Value)。价值密度的高低与数据总量的大小成反比。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
处理速度快(Velocity)。大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到352ZB。
-------------------------------------------
社交网络,让我们越来越多地从数据中观察到人类社会的复杂行为模式。社交网络,为大数据提供了信息汇集、分析的第一手资料。从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,找出更符合用户“口味”的产品和服务,并结合用户需求有针对性地调整和优化自身,就是大数据的价值。
所以,建立在上述的概念上我们可以看到大数据的产业变化:
1 大数据飞轮效应所带来的产业融合和新产业驱动
2 信息获取方式的完全变化带来的新式信息聚合
3 信息推送方式的完全变化带来的新式信息推广
4 精准营销
5 第三方支付 ―― 小微信贷,线上众筹为代表的互联网金融带来的全面互联网金融改革
6 产业垂直整合趋势以及随之带来的产业生态重构
7 企业改革以及企业内部价值链重塑,扩大的产业外部边界
8 及各级机构开放,透明化,以及随之带来的集中管控和内部机制调整
9 数据创新带来的新服务
问题五:大数据是什么?大数据可以做什么?大数据实际做了什么?大数据要怎么做 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 大数据分析的标配是商业智能(BI)软件,传统数据分析的繁杂之处主要体现在两个方面,一是技术人员需要花费大量时间准备数据;二是业务人员基于数据偶得的一些分析需求实现过程复杂。 FineBI的Data Service模块,特有的分析设计模式和指标影响因素智能分析模块,能够帮助用户解决传统BI数据准备时间长,偶得数据分析过程复杂等问题,让技术人员准备数据时无需任何代码和复杂的设置过程,让非IT人员能够轻松自在得进行分析。
问题六:大数据可以做什么 可以用几个关键词对大数据做一个界定。
首先,“规模大”,这种规模可以从两个维度来衡量,一是从时间序列累积大量的数据,二是在深度上更加细化的数据。
其次,“多样化”,可以是不同的数据格式,如文字、、视频等,可以是不同的数据类别,如人口数据,经济数据等,还可以有不同的数据来源,如互联网、传感器等。
第三,“动态化”。数据是不停地变化的,可以随着时间快速增加大量数据,也可以是在空间上不断移动变化的数据。
这三个关键词对大数据从形象上做了界定。
但还需要一个关键能力,就是“处理速度快”。如果这么大规模、多样化又动态变化的数据有了,但需要很长的时间去处理分析,那不叫大数据。从另一个角度,要实现这些数据快速处理,靠人工肯定是没办法实现的,因此,需要借助于机器实现。
最终,我们借助机器,通过对这些数据进行快速的处理分析,获取想要的信息或者应用的整套体系,才能称为大数据。
问题七:大数据公司具体做什么? 主要业务包括数据采集,数据存储,数据分析,数据可视化以及数据安全等,这些是依托已有数据的基础上展开的业务模式,其他大数据公司是依靠大数据工具,对市场需求,为市场带来创新方案并推动技 术发展。这类公司里天云大数据在市场应用里更加广泛
问题八:大数据应用到底是做什么的? 对于“大数据”,研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。随着云时代的来临,大数据也吸引了越来越多的关注。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
问题九:在未来大数据能做什么? 是的,通过网络进行收集数据,将采集到的数据进行加工处理、分析,前提是 要通信的,大数据是指 一个 当今现代化的一个流行化概念名词,二三十年前就有人提出来了,特指 海量信息,可以永久性存储在服务器中,谁采集到的数据,谁管理,数据是在变化的,随着人类的活动,国内 掀起一场互联网金融,每个行业 都有自己 独特的 数据 分类信息,进行数据挖掘,有用的数据 捞取出来 ,那么它就是有意义 的
问题十:大数据营销具体是什么呢? 大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。阳众互动认为大数据营销真正的核心在于让网络广告在合适的时间,通过合适的载体,以合适的方式,投给合适的人,说到底就是以自身掌握的数据或者说信息对客户进行精准的定位,以最好、最快的满足目标群体的需求。大数据能做如下:
一、对信息的理解。你发的每一张、每一个新闻、每一个广告,这些都是信息,你对这个信息的理解是大数据重要的领域。
二、用户的理解。每个人的基本特征,你的潜在的特征,每个用户上网的习惯等等,这些都是对用户的理解。
三、关系。关系才是我们的核心,信息与信息之间的关系,一条微博和另外一条微博之间的关系,一个广告和另外一个广告的关系。一条微博和一个视频之间的关系,这些在我们肉眼去看的时候是相对简单的。
大数据专业术语:
1、apache软件基金会(asf)
提供了许多大数据的开源项目,目前有350多个项目。是专门为支持开源软件项目而办的一个非盈利性组织。在它所支持的apache项目与子项目中,所发行的软件产品都遵循apache许可证。
2、apachemahout
mahout提供了一个用于机器学习和数据挖掘的预制算法库,也是创建更多算法的环境。换句话说,是一个机器学习的天堂环境
3、apacheoozie
在任何编程环境中,需要一些工作流程系统来以预定义的方式和定义的依赖关系来安排和运行工作。oozie提供的大数据工作以apachepig,mapreduce和hive等语言编写
服务器是为我们提供不间断的互联网应用以及服务的主机,能起到为我们提供文件上传,数据保存,应用服务或网站浏览等作用,其实不是机房要用服务器,而是服务器需要机房,将服务器放在机房,是为了统一管理,节省资源,使其提供的服务更稳定。
服务器也并非就是高性能的代名词,随着目前个人电脑的性能提升,其实就算普通的电脑都可以充当服务器。
在网络环境下,根据服务器提供的服务类型不同,分为文件服务器、数据库服务器、应用程序服务器、WEB服务器等。
文件服务器为我们的文件离线存储提供了可能,我们使用的各大网盘云盘背后就有无数的文件服务器帮助存储我们上传的文件。
数据库服务器为我们的信息保存提供了可能,我们在各大网站注册的账号,提交的文字,甚至我们的行为数据,均被保存到了数据库服务器中。
应用服务器以及WEB服务器则为我们提供了浏览网页,使用各式各样应用的能力。
将服务器统一放在机房是为了便于管理,而服务器之所以需要长开,相信上边几种服务器的功能已经让你略知一二,如果这些服务器不能长时间稳定的工作,那我们将得不到稳定且随时随地都能使用网络的权力。
不难想象,如果在我们使用即时通讯工具时,服务器关机,那我们将联系不到对方,我们所有的消息都发不出去。
如果我们在使用云盘网盘等服务时,服务器关机,那我们上传一半的文件将丢失,同时也无法下载我们已经上传的文件。
还有很多各式各样的服务器为我们提供各式各样的服务,对于一些大企业,他们必须保证一天24小时甚至全年365天稳定运行,不然将会造成难以想象的损失。
所以,服务器并非没人用,我们无时无刻不在使用。
扩展资料:
在网络环境下,根据服务器提供的服务类型不同,分为文件服务器、数据库服务器、应用程序服务器、WEB服务器等。一般来说服务器应具备承担服务并且保障服务的能力。
服务器的构成包括处理器、硬盘、内存、系统总线等,和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
参考资料:
1、横向扩展
大数据技能呈现之初所要解决的问题就是数据存储与计算,近年来跟着数据量发生速度越来越快,传统渠道存储与计算才能遇到瓶颈,而大数据渠道是分布式架构,理论上是能够无限扩展的,所以其能更好的适应年代的开展。
2、资源同享
企业经过运用单一集群,能够化零为整,整合一切可用服务器资源,并一致对外提供一切的才能,能够完成细粒度的资源调度机制。而且只需维护一个集群,降低运维本钱。
3、数据同享
运用单一存储架构,能够将企业内部一切数据会集在一个集群中,便利进行各种事务数据的整合运用,从而充分利用大数据技能全量数据剖析的优势。
4、服务同享
经过一致服务架构,可将一套一致服务设计规则应用到一切的服务完成上,例如一张表数据能够以文件方式同享也能以接口方式接口进行同享,咱们进行一致之后各个部门能够以相同办法进行调用运用,避免烟囱式架构,直接削减重复开发本钱。
5、安全保证
经过一致安全架构,在单一集群架构基础上完成细粒度的资源阻隔,对不同人员进行不同程度的授权。
大数据大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中[2] 大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、value(价值)
大数据服务器
一台或多台计算机和数据库管理系统软件共同构成了数据库服务器,数据库服务器为客户应用提供服务,这些服务是查询、更新、事务管理、索引、高速缓存、查询优化、安全及多用户存取控制等
小南国永生花
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)