为了确保应用程序能够达到500tps的目标,应该考虑服务器性能提升,比如使用更快的硬盘,更好的CPU,更多的内存,更快的网络等。同时,应该优化程序代码,减少请求的延迟,降低响应时间,并且要使用更有效的数据存储和索引技术,以更好地支持大量的并发请求。当TPS曲线如果变化缓慢或者有平坦的趋势,说明服务器开始出现瓶颈。解析:tps 曲线会变平坦的原因是因为系统处理事务的线程数往往是固定的一个数值。(一般是由程序设定或者服务器配置决定),假设响应时间是固定的一个值时,那么每秒 中系统能够处理的事务数是固定的数值。不会因为压力的增大,TPS也会一直增大。实际上,响应时间并不是一个固定的值,而是随着压力变大,响应时间往往会 增加。那么,实际上,系统最大的TPS值,往往会比根据基准值估算出来的TPS要小。PS:下面是性能测试的主要概念和计算公式,记录下:
一.系统吞度量要素:
一个系统的吞度量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。单个reqeust 对CPU消耗越高,外部系统接口、IO影响速度越慢,系统吞吐能力越低,反之越高。
系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间
QPS(TPS):每秒钟request/事务 数量
并发数: 系统同时处理的request/事务数
响应时间: 一般取平均响应时间
(很多人经常会把并发数和TPS理解混淆)
理解了上面三个要素的意义之后,就能推算出它们之间的关系:
QPS(TPS)= 并发数/平均响应时间 或者 并发数 = QPS平均响应时间
一个典型的上班签到系统,早上8点上班,7点半到8点的30分钟的时间里用户会登录签到系统进行签到。公司员工为1000人,平均每个员上登录签到系统的时长为5分钟。可以用下面的方法计算。
QPS = 1000/(3060) 事务/秒
平均响应时间为 = 560 秒
并发数= QPS平均响应时间 = 1000/(3060) (560)=1667
一个系统吞吐量通常由QPS(TPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降。
决定系统响应时间要素
我们做项目要排计划,可以多人同时并发做多项任务,也可以一个人或者多个人串行工作,始终会有一条关键路径,这条路径就是项目的工期。
系统一次调用的响应时间跟项目计划一样,也有一条关键路径,这个关键路径是就是系统影响时间;
关键路径是有CPU运算、IO、外部系统响应等等组成。
二.系统吞吐量评估:
我们在做系统设计的时候就需要考虑CPU运算、IO、外部系统响应因素造成的影响以及对系统性能的初步预估。
而通常境况下,我们面对需求,我们评估出来的出来QPS、并发数之外,还有另外一个维度:日PV。
通过观察系统的访问日志发现,在用户量很大的情况下,各个时间周期内的同一时间段的访问流量TPS :Trasaction per second也就是事务数/秒。它是软件测试结果的测量单位。
TPS是指一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数,最终利用这些信息来估计得分。客户机使用加权协函数平均方法来计算客户机的得分,测试软件就是利用客户机的这些信息使用加权协函数平均方法来计算服务器端的整体TPS得分。一般来说系统的TPS取决于系统事务最低处理能力的模块的TPS,经验值10-100
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)