反渗透是最精密的膜法液体分离技术,在进水侧施加 *** 作压力以克服自然渗透压,当高于自然渗透压的 *** 作压力,水分子自然渗透的流动方向就会逆转,反渗透设备能阻挡所有溶解性盐及分子量大于100的有机物,但允许水分子透过,反渗透膜脱盐率一般大于98%,它们广泛用于工业纯水及电子超纯水制备,饮用纯净水生产,锅炉给水等过程,在离子交换前使用反渗透设备可大幅度降低 *** 作用水和废水的排放量。
1反渗透是在室温条件下,采用无相变的物理方法将含盐水进行脱盐、除盐。2采用反渗透膜,脱盐率好,使用寿命长,运行成本低廉; 3采用全自动预处理系统,实现无人化 *** 作; 4采用格兰富增压泵,效率好噪音低,稳定可靠; 5在线水质监测控制,实时监测水质变化,保障水质安全; 6全自动电控程序,还可选配触摸屏 *** 作,使用方便;7切合当地水质的个性化设计,全方位满足需求。8反渗透装置自动化,运行维护和设备维护工作量很少。9水的处理仅依靠水的压力作为推动力,其能耗在许多处理工艺中低。10不用大量的化学药剂和酸、碱再生处理,无化学费液排放,无环境污染。11反渗透可以连续运行制水,系统简单, *** 作方便,产品水质稳定。12设备占地面积小,需要的空间也小。
电厂阴阳床系统(YB-CJS-001)工作原理及优缺点:
是利用阳离子交换树脂中可交换的阳离子(如Na+、H+),把水中所含的钙、镁离子交换出来,以降低水的硬度。离子反应式为:Ca2++2RNa=R2Ca+2Na+,Mg2++2RNa=R2Mg+2Na+。在离子交换软化过程中,当出水水质超过某一定值后,交换器中的离子交换树脂将视为“失效”,这时,为恢复树脂的交换能力,通常采用工业盐水溶液对树脂进行再生,其反应为:R2Ca+2NaCL=2RNa+CaCL2,R2Mg+2NaCL=2RNa+MgCL2
1、选用离子交换树脂,工作交换容量大,能耗低,使用寿命长。2、控制部分全部采用富莱科或阿图祖控制阀,保障设备持续安全运行。功位控制点:流量控制、制水控制、失效控制、再生控制(进盐及补水控制)、加盐液控制、盐液稀释自动补水控制。3、全自动控制系统,出水稳定,使用 *** 作方便快捷。 (在7天或12天范围内根据需要设定还原周期,二十四小时内任意选择还原时间,并可以对还原过程进行调整)4、结构合理,安装 *** 作方便。5、可根据实际使用需求,个性化设计相应设备网页打不开是什么原因
1、木马病毒感染所致,恶意插件和病毒破坏了浏览器组件和系统程序,导致浏览器无法正常打开和运行并出现以下情,建议杀毒。
2、浏览器使用了代理服务器,打不开网页。
3、DNS服务器解释出错,请手动在本地连接进行设置。
4、电脑存在大量垃圾,网民没有做定期清理,这样也会导致出现网页打不开情况。
解决办法:
你可以使用金山卫士的 一键清理功能,清理垃圾清理电脑垃圾文件和病毒,节省磁盘空间,清理痕迹清除使用记录,保护个人隐私,清理注册表定期清理注册表,可以加快系统运行速度
示波器是一种用途十分广泛的电子测量仪器。俗话说,电是看不见摸不着的。但是示波器可以帮我们“看见”电信号,便于人们研究各种电现象的变化过程。所以示波器的核心功能,就和他的名字一样,是显示电信号波形的仪器,以供工程师查找定位问题或评估系统性能等等。
而波形,也有多种定义,比如时域或者频域的波形,对于示波器而言,大多数时候测量的是电压随时间的变化,也就是时域的波形。因此,示波器可以分析被测点电压变化情况,从而被广泛的应用于各个电子行业及领域中。
一般我们业内对示波器的分类只按模拟示波器和数字示波器来分,有些厂家可能为了突出其示波器的某项功能给其命名为其他名字,比如数字荧光示波器等。但其本质原理依然逃不出这2大示波器类别。
模拟示波器是属于早期的示波器,主要基于阴极射线管(也叫显像管,曾广泛应用于早期的电视机、显示器)打出的电子束通过水平偏转和垂直偏转系统,打在屏幕的荧光物质上显示波形。
然而到了现在,模拟示波器所剩下的优点,似乎就只有价格了。它没有存储数据和分析波形能力,触发功能也有限,捕获单次和偶发信号的能力也不行,而且由于其内部采用了大量模拟器件,随着时间温度变化这些器件也会发生变化,因此性能也不稳定。现代电子测量中几乎已经淘汰了模拟示波器,因此我们今天主要讲的也是数字示波器。
早期的数字示波器,由于显示技术制约,使用的依然是模拟示波器上的CRT(Cathode Ray Tube,阴极射线管)显示屏。数字示波器区别于模拟示波器的最大不同,主要在于输入的信号不再直接打到显示屏上,而是通过ADC(Analog to Digital Converter,模数转换器)对信号采样和数字化处理后存入高速缓存里,再通过信号处理电路将数据读出来。
由于早期的数字示波器用CRT显示,因此还需要通过DAC数模转换器把数字量转换成模拟量显示到CRT显示屏上。现代化的数字示波器,也已经大多不再使用CRT显示屏,而是采用液晶显示屏,不但体积减少很多,有些还提供了更加 *** 作便捷的触控功能,而且也不再需要把数字化的采样点转换成模拟信号了。由于这两者在功能结构上没有本质区别,所以业界一般也没有CRT示波器和LCD示波器的叫法。
数字示波器很多时候都被叫做数字存储示波器,因为数字示波器中重要的一环,就是把ADC采集的数据存储起来。现代数字示波器采集数据的主要过程我们通过这块麦科信STO1104C智能示波器的主板进行直观了解:
①信号通过探头衰减成合适比例送入示波器前端。示波器能测多大电压一般取决于探头,探头通过衰减可以把上万伏的电压信号变成几十伏。
②信号通过耦合电路到达前端衰减器和放大器,示波器软件上表现为调节垂直档位,使得波形尽量占满整个屏幕,从而提高垂直精度,使测量更准确。前端部分很大程度上决定了示波器的第一指标:带宽。
③ARM处理器控制FPGA调节ADC模数转换器采样率,示波器软件上表现为调节时基,由于存储深度为固定值,采样率 = 存储深度 ÷ 波形记录时长,通常时基设置的改变是通过改变采样率来实现的。因此厂家标注的采样率往往是在特定时基设置之下才有效的,在大时基下受存储深度的影响,采样率不得不降低。ADC模数转换器和RAM高速存储器影响着示波器的另外两大指标:采样率和存储深度。
④接下去,由FPGA驱动ADC同步采样,ADC将采集到的数据进行二进制数据化并写入高速缓存。存储器缓存即存储深度,一般存储器的大小是示波器标识存储深度大小的四倍,因为FPGA无法控制示波器的触发,因此采集的信号必定先是标识存储深度的2倍,然后再来根据触发筛选其中的一段波形,所以示波器可以看到触发位置之前的波形。又由于示波器在筛选之前采集的波形的时候,采集不能停,否则就会导致波形捕获率太低,因此同时还需要继续采集同样长度的采样点,如此反复,这样一来就是四倍了。
⑤收到触发指令后,存储器再把数据交给ARM处理器处理
⑥ARM处理器将数据处理后通过显示接口将数据输出至显示屏展示给使用者。通过计算,示波器还能模仿出类似模拟示波器的多级辉度显示,以及数字示波器特有的色温显示效果,余晖显示效果。
⑦示波器处理完数据后,可以把当前的波形图像或者是数据保存到存储器中,要注意这里的存储完全不同于存储深度的高速存缓,大多数示波器采用外部存储器如U盘,SD卡,电脑等,现在一些现代化的示波器会内置大存储可以直接保存在示波器里。
这个过程中,②③④都是并行处理的。
由于数字示波器处理速度的制约,所以它并不能保证被测信号的波形能连续不断地实时显示在屏幕上,显示的两个波形之间会有波形数据丢失,也即所说的死区时间,这也是数字示波器相比较于模拟示波器的最大缺点了。不过,随着示波器运算能力的增强,波形捕获率的不断上升,这一缺点也在被慢慢弥补。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)