根据“最小4K地址为系统程序区”这句话,怎么确定二进制范围

根据“最小4K地址为系统程序区”这句话,怎么确定二进制范围,第1张

既然是最小地址,那么地址总线上的16位地址值就是从0000000000000000开始;既然是4K地址,那么寻址范围就是2^12=4K,16位地址线中的低12位从000000000000变化到111111111111,而地址线高4位保持为0000不变。所以最低4K地址的寻址范围就是0000000000000000~0000111111111111。

包括系统存储器和用户存储器两部分。系统存储器用来存放由PLC生产厂家编写的系统程序,系统程序固化在ROM内,用户不能直接更改,它使PLC具有基本的功能,能够完成PLC设计者规定的各项工作。系统程序质量的好坏,很大程度上决定了PLC的性能,其内容主要包括三部分。第一部分为系统管理程序,它主要控制PLC的运行,使整个PLC按部就班地工作。第二部分为用户指令解释程序,通过用户指令解释程序,将PLC的编程语言变为机器语言指令,再由CPU执行这些指令。第三部分为标准程序模块与系统调用,它包括许多不同功能的子程序及其调用管理程序,如完成输入、输出及特殊运算等的子程序。PLC的具体工作都是由这部分程序来完成的,这部分程序的多少也决定了PLC性能的高低。

用户存储器包括用户程序存储器(程序区)和功能存储器(数据区)两部分。用户程序存储器用来存放用户针对具体控制任务用规定的PLC编程语言编写的各种用户程序,以及用户的系统配置。用户程序存储器根据所选用的存储器单元类型的不同,可以是RAM(有掉电保护)、EPROM或EEPROM存储器,其内容可以由用户任意修改或增删。用户功能存储器是用来存放(记忆)用户程序中使用器件的ON/OFF状态/数值数据等。用户存储器容量的大小,关系到用户程序容量的大小,是反映PLC性能的重要指标之一。

1 首先识别出街道的边界和位置信息,比如街道的起点和终点的经纬度坐标,或者街道的几何形状。

2 然后使用空间分析的相关技术,如生成缓冲区和多边形的交集,或者基于街道边界线的比较,来判断街道之间是否存在相邻关系。

3 最后,根据空间分析结果,可以判断街道之间是否是相邻关系。

plc当中存放用户程序的存储器称为用户存储器。用户存储器分为用户程序存储区和工作数据存储区,由随机存取存储器(RAM)组成,用户使用的,断电内容消失,常用高效的锂电池作为后备电源,寿命为3~5年。

1、进入三菱plc中,点击打开按钮载入自己的相关程序。

2、等载入成功以后,需要选择菜单栏里面的视图窗口。

3、这个时候,就可以在里面点击左上角的STL选项了。

4、这样一来,即可实现三菱plc中stl指令的输入了。

扩展资料

三菱plc、stl指令用法:

(1) STL触点与母线相连,与STL触点相连的起始触点应使用LD或LDI指令。即使用STL 指令后,LD点移至STL触点的右侧,一直到出现下一条STL指令或RET指令为止。RET指令表明整个STL程序区的结束,LD点返回原母线。

各STL触点驱动的电路一般放在一起,最后一个STL电路结束时一定要使用RET指令,否则将出现“程序错误”信息,PLC不能执行用户程序。

(2) STL触点可以直接驱动或通过别的触点驱动Y、M、S、T等元件的线圈和应用指令。STL触点右边不能使用入栈(MPS)指令。

(3) 由于CPU只执行活动步对应的电路块,使用STL指令时允许双线圈输出,即不同的STL触点可以分别驱动同一编程元件的一个线圈。但是同一元件的线圈不能在可能同时为活动步的STL区内出现,在有并行序列的顺序功能图中,应特别注意这一问题。

(4) 在步的活动状态的转换过程中,相邻两步的状态继电器会同时ON一个扫描周期。为了避免不能同时接通的两个输出(如控制异步电动机正反转的交流接触器线图)同时动作,除了在梯形图中设置软件互锁电路外,还应在PLC外部设置由常闭触点组成的硬件互锁电路。

定时器在下一次运行之前,首先应将它复位。同一定时器的线圈可以在不同的步使用,但是如果用于相邻的两步,在步的活动状态转换时,该定时器的线圈不能断开,当前值不能复位,将导致定时器的非正常运行。

(5) OUT指令与SET指令均可用于步的活动状态的转换,使新的状态继电器置位,原状态继电器自动复位,此外还有自保持功能。SET指令一般用于驱动目标步比当前步元件号大的状态继电器。

在STL区内的OUT指令用于顺序功能图中的闭环和跳步,如果想跳回已经处理过的步,或向前跳过若干步,可对状态继电器使用OUT指令。OUT指令还可以用于远程跳步,即从顺序功能图中的一个序列跳到另一个序列。以上情况虽然可以使用SET指令,但最好使用OUT指令。

PLC由CPU、电源、输入电路、输出电路、存储器和通信接口电路几大部分组成如图所示

PLC内部结构

一、CPU

PLC的CPU实际上就是中央处理器,能够进行各种数据的运算和处理,将各种输入信号转化输入寄存器,然后进行逻辑的运算、计时、计数、算数运算、数据的处理和传送、通信联网以及各种 *** 作,对编制的程序进行编译、执行命令,把结果传送到输出端,去响应各种外部设备。

二、存储器

PLC系统中的存储器主要用于存放系统程序、用户程序和工作状态数据。PLC的存储器包括系统程序存储器和用户存储器。

1 系统程序存储器(ROM)

系统程序存储器(ROM)用以存储系统管理程序、监控程序和系统内部数据,PLC出厂前已将其固化在只读存储器ROM或者PROM中,用户不能更改。

2 用户存储器(RAM)

RAM包括用户程序存储器(程序区)和数据存储器(数据区)两部分。

RAM存储各种暂存数据、中间结果和用户程序。这类存储器一般有低功率的CMOS-RAM构成,其中的存储内容可以读出并修改。掉电后存储内容丢失,一般由锂电池保持。也就是说用户存储器用来存放用户针对具体控制任务,采用PLC编程语言编写的各种程序。

用户存储器根据所选择的存储器的类型不同(可以是RAM、EPROM和EEPROM存储器),用户可以对程序进行修改和增减。用户数据存储器可以用来存放用户所使用的器件的ON/OFF状态和数据等,用户存存储器的大小关系到用户程序容量的大小,是反映PLC性能的重要指标。

PLC为了便于读出、写入和修改,用户程序一般存储在CMOS静态RAM中,用锂电池保持电源的持续供应,以保证掉电后程序不会丢失。

存放在RAM中的工作数据是PLC运行过程中经常变化和经常存取得一些数据,用来适应随机存取的需求,在PLC的工作数据存储器中,设有存入输入输出继电器、辅助继电器、计数器、定时器等逻辑数据存储区,这些器件的状态都是有用户程序的初始值设置和运行情况而确定的。根据需求,部分数据在掉电时用备用电池维持现有状态,这部分在掉电时可保存数据的存储区称为保持数据区。

三、开关量的输入输出接口(I/O)

开关量的输入输出接口是与工业生产现场控制电器相连接的接口。

开关量的输入输出接口采用光电隔离和RC滤波,实现了PLC内部电路和外部电路的电气隔离,并减小了电磁干扰,同时满足工业现场的各类信号的匹配需求。

例如,开关量输入接口电路采用光电耦合电路,将限位开关、手动开关、编码器等现场输入设备的控制信号转换成CPU所能接受和处理的数字信号。

1 输入接口

输入接口是用来接受、采集外部的输入信号,并将这些信号转换成CPU可接受的内部信息。

输入接口电路可采集的信号有三大类,包括有源开关、无源开关和模拟量信号。按钮,接触器触点和行程开关等都是无源开关,而接近开关、晶体管开关电路等属于有源开关,而模拟量信号则是电位器、测速发电机和各类变送器所产生的信号。

2 输出接口

输出接口电路是PLC与外部负载之间的一个桥梁,能够将PLC向外输出信号转化成可以驱动外部电路的控制信号,以便控制如接触器线圈等电器的通断电。

开关量输出电路包括继电器输出、晶闸管输出和晶体管输出三种输出形式。

继电器输出响应慢,带负载能力大,每个口输出的最大电流为2A,可以接直流或者交流负载。

晶体管输出响应快,带负载能力小,每个口输出的电流在几十毫安,可连接直流负载,等效电路如图:

四、电源模块

PLC的电源模块可以将外部的输入电源经过处理后,转化成PLC的CPU、存储器、输入输出接口等内部电路工作所需要的直流电源。

许多PLC的直流电源采用直流稳压开关电源,不仅可以提供多种独立的电压供内部使用,而且还可以为外部输入(如传感器)提供电源,PLC根据型号不同,有的采用单项交流电源,一般为220v,有的采用直流电源,一般为24V

存储管理的基本原理内存管理方法内存管理主要包括内存分配和回收、地址变换、内存扩充、内存共享和保护等功能。下面主要介绍连续分配存储管理、覆盖与交换技术以及页式与段式存储管理等基本概念和原理。1 连续分配存储管理方式连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。(1)单一连续存储管理在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的 *** 作系统。CP/M和DOS 20以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用-定数量的内存。(2)分区式存储管理为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区, *** 作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。分区式存储管理引人了两个新的问题:内碎片和外碎片。前者是占用分区内未被利用的空间,后者是占用分区之间难以利用的空闲分区(通常是小空闲分区)。为实现分区式存储管理, *** 作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。分区式存储管理常采用的一项技术就是内存紧缩(compaction):将各个占用分区向内存一端移动,然后将各个空闲分区合并成为一个空闲分区。这种技术在提供了某种程度上的灵活性的同时,也存在着一些弊端,例如:对占用分区进行内存数据搬移占用CPU~t寸间;如果对占用分区中的程序进行“浮动”,则其重定位需要硬件支持。1)固定分区(nxedpartitioning)。固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。这种技术的优点在于,易于实现,开销小。缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。2)动态分区(dynamic partitioning)。动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎片。但它却引入了另一种碎片--外碎片。动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。若是大于要求,则将该分区分割成两个分区,其中一个分区为要求的大小并标记为“占用”,而另一个分区为余下部分并标记为“空闲”。分区分配的先后次序通常是从内存低端到高端。动态分区的分区释放过程中有一个要注意的问题是,将相邻的空闲分区合并成一个大的空闲分区。下面列出了几种常用的分区分配算法:首先适配法(nrst-fit):按分区在内存的先后次序从头查找,找到符合要求的第一个分区进行分配。该算法的分配和释放的时间性能较好,较大的空闲分区可以被保留在内存高端。但随着低端分区不断划分会产生较多小分区,每次分配时查找时间开销便会增大。下次适配法(next-fit):按分区在内存的先后次序,从上次分配的分区起查找(到最后{区时再从头开始},找到符合要求的第一个分区进行分配。该算法的分配和释放的时间性能较好,使空闲分区分布得更均匀,但较大空闲分区不易保留。最佳适配法(best-fit):按分区在内存的先后次序从头查找,找到其大小与要求相差最小的空闲分区进行分配。从个别来看,外碎片较小;但从整体来看,会形成较多外碎片优点是较大的空闲分区可以被保留。最坏适配法(worst- fit):按分区在内存的先后次序从头查找,找到最大的空闲分区进行分配。基本不留下小空闲分区,不易形成外碎片。但由于较大的空闲分区不被保留,当对内存需求较大的进程需要运行时,其要求不易被满足。2覆盖和交换技术引入覆盖(overlay)技术的目标是在较小的可用内存中运行较大的程序。这种技术常用于多道程序系统之中,与分区式存储管理配合使用。覆盖技术的原理很简单,一个程序的几个代码段或数据段,按照时间先后来占用公共的内存空间。将程序必要部分(常用功能)的代码和数据常驻内存;可选部分(不常用功能)平时存放在外存(覆盖文件)中,在需要时才装入内存。不存在调用关系的模块不必同时装入到内存,从而可以相互覆盖。覆盖技术的缺点是编程时必须划分程序模块和确定程序模块之间的覆盖关系,增加编程复杂度;从外存装入覆盖文件,以时间延长换取空间节省。覆盖的实现方式有两种:以函数库方式实现或 *** 作系统支持。交换(swapping)技术在多个程序并发执行时,可以将暂时不能执行的程序送到外存中,从而获得空闲内存空间来装入新程序,或读人保存在外存中而处于就绪状态的程序。交换单位为整个进程的地址空间。交换技术常用于多道程序系统或小型分时系统中,与分区式存储管理配合使用又称作“对换”或“滚进/滚出”(roll-in/roll-out)。其优点之一是增加并发运行的程序数目,并给用户提供适当的响应时间;与覆盖技术相比交换技术另一个显著的优点是不影响程序结构。交换技术本身也存在着不足,例如:对换人和换出的控制增加处理器开销;程序整个地址空间都进行对换,没有考虑执行过程中地址访问的统计特性。3页式和段式存储管理在前面的几种存储管理方法中,为进程分配的空间是连续的,使用的地址都是物理地址。如果允许将一个进程分散到许多不连续的空间,就可以避免内存紧缩,减少碎片。基于这一思想,通过引入进程的逻辑地址,把进程地址空间与实际存储空间分离,增加存储管理的灵活性。地址空间和存储空间两个基本概念的定义如下:地址空间:将源程序经过编译后得到的目标程序,存在于它所限定的地址范围内,这个范围称为地址空间。地址空间是逻辑地址的集合。存储空间:指主存中一系列存储信息的物理单元的集合,这些单元的编号称为物理地址存储空间是物理地址的集合。根据分配时所采用的基本单位不同,可将离散分配的管理方式分为以下三种段式存储管理和段页式存储管理。其中段页式存储管理是前两种结合的产物。(1)页式存储管理1)基本原理。将程序的逻辑地址空间划分为固定大小的页(page),而物理内存划分为同样大小的页框(pageframe)。程序加载时,可将任意一页放人内存中任意一个页框,这些页框不必连续,从而实现了离散分配。该方法需要CPU的硬件支持,来实现逻辑地址和物理地址之间的映射。在页式存储管理方式中地址结构由两部构成,前一部分是页号,后一部分为页内地址,如图4-2所示。这种管理方式的优点是,没有外碎片,每个内碎片不超过页大比前面所讨论的几种管理方式的最大进步是,一个程序不必连续存放。这样就便于改变程序占用空间的大小(主要指随着程序运行,动态生成的数据增多,所要求的地址空间相应增长)。缺点是仍旧要求程序全部装入内存,没有足够的内存,程序就不能执行。2)页式管理的数据结构。在页式系统中进程建立时, *** 作系统为进程中所有的页分配页框。当进程撤销时收回所有分配给它的页框。在程序的运行期间,如果允许进程动态地申请空间, *** 作系统还要为进程申请的空间分配物理页框。 *** 作系统为了完成这些功能,必须记录系统内存中实际的页框使用情况。 *** 作系统还要在进程切换时,正确地切换两个不同的进程地址空间到物理内存空间的映射。这就要求 *** 作系统要记录每个进程页表的相关信息。为了完成上述的功能,-个页式系统中,一般要采用如下的数据结构。进程页表:完成逻辑页号(本进程的地址空间)到物理页面号(实际内存空间)的映射。每个进程有一个页表,描述该进程占用的物理页面及逻辑排列顺序。物理页面表:整个系统有一个物理页面表,描述物理内存空间的分配使用状况,其数据结构可采用位示图和空闲页链表。请求表:整个系统有一个请求表,描述系统内各个进程页表的位置和大小,用于地址转换也可以结合到各进程的PCB(进程控制块)里。3)页式管理地址变换在页式系统中,指令所给出的地址分为两部分:逻辑页号和页内地址。CPU中的内存管理单元(MMU)按逻辑页号通过查进程页表得到物理页框号,将物理页框号与页内地址相加形成物理地址(见图4-3)。上述过程通常由处理器的硬件直接完成,不需要软件参与。通常, *** 作系统只需在进程切换时,把进程页表的首地址装入处理器特定的寄存器中即可。一般来说,页表存储在主存之中。这样处理器每访问一个在内存中的 *** 作数,就要访问两次内存。第一次用来查找页表将 *** 作数的逻辑地址变换为物理地址;第二次完成真正的读写 *** 作。这样做时间上耗费严重。为缩短查找时间,可以将页表从内存装入CPU内部的关联存储器(例如,快表)中,实现按内容查找。此时的地址变换过程是:在CPU给出有效地址后,由地址变换机构自动将页号送人快表,并将此页号与快表中的所有页号进行比较,而且这种比较是同时进行的。若其中有与此相匹配的页号,表示要访问的页的页表项在快表中。于是可直接读出该页所对应的物理页号,这样就无需访问内存中的页表。由于关联存储器的访问速度比内存的访问速度快得多。(2)段式存储管理1)基本原理。在段式存储管理中,将程序的地址空间划分为若干个段(segment),这样每个进程有一个二维的地址空间。在前面所介绍的动态分区分配方式中,系统为整个进程分配一个连续的内存空间。而在段式存储管理系统中,则为每个段分配一个连续的分区,而进程中的各个段可以不连续地存放在内存的不同分区中。程序加载时, *** 作系统为所有段分配其所需内存,这些段不必连续,物理内存的管理采用动态分区的管理方法。在为某个段分配物理内存时,可以采用首先适配法、下次适配法、最佳适配法等方法。在回收某个段所占用的空间时,要注意将收回的空间与其相邻的空间合并。段式存储管理也需要硬件支持,实现逻辑地址到物理地址的映射。程序通过分段划分为多个模块,如代码段、数据段、共享段。这样做的优点是:可以分别编写和编译源程序的一个文件,并且可以针对不同类型的段采取不同的保护,也可以按段为单位来进行共享。总的来说,段式存储管理的优点是:没有内碎片,外碎片可以通过内存紧缩来消除;便于实现内存共享。缺点与页式存储管理的缺点相同,进程必须全部装入内存。2)段式管理的数据结构。为了实现段式管理, *** 作系统需要如下的数据结构来实现进程的地址空间到物理内存空间的映射,并跟踪物理内存的使用情况,以便在装入新的段的时候,合理地分配内存空间。·进程段表:描述组成进程地址空间的各段,可以是指向系统段表中表项的索引。每段有段基址(baseaddress)。·系统段表:系统所有占用段。·空闲段表:内存中所有空闲段,可以结合到系统段表中。3)段式管理的地址变换。在段式管理系统中,整个进程的地址空间是二维的,即其逻辑地址由段号和段内地址两部分组成。为了完成进程逻辑地址到物理地址的映射,处理器会查找内存中的段表,由段号得到段的首地址,加上段内地址,得到实际的物理地址(见图4-4)。这个过程也是由处理器的硬件直接完成的, *** 作系统只需在进程切换时,将进程段表的首地址装入处理器的特定寄存器当中。这个寄存器一般被称作段表地址寄存器。4页式和段式系统的区别页式和段式系统有许多相似之处。比如,两者都采用离散分配方式,且都通过地址映射机构来实现地址变换。但概念上两者也有很多区别,主要表现在:·页是信息的物理单位,分页是为了实现离散分配方式,以减少内存的外零头,提高内存的利用率。或者说,分页仅仅是由于系统管理的需要,而不是用户的需要。段是信息的逻辑单位,它含有一组其意义相对完整的信息。分段的目的是为了更好地满足用户的需要。·页的大小固定且由系统决定,把逻辑地址划分为页号和页内地址两部分,是由机器硬件实现的。段的长度不固定,且决定于用户所编写的程序,通常由编译系统在对源程序进行编译时根据信息的性质来划分。·页式系统地址空间是一维的,即单一的线性地址空间,程序员只需利用一个标识符,即可表示一个地址。分段的作业地址空间是二维的,程序员在标识一个地址时,既需给出段名,又需给出段内地址。 原理作业10 页式存储管理和段式存储管理的工作原理特点、特点 及优劣。 答:页式管理的基本思想是:为了更好地利用分区存储管理中 所产生的"零头"问题,允许把一个作业存放在不连续的内存块中, 又可以连续运行,它允许只调入用户作业中常用部分,不常用部分 不长期驻留内存,有效提高了内存的利用率。 页式存储管理的工作原理: A、划分实页:将物理内存划分成位置固定、大小相同的"块"(实页 面)。 B、划分虚页:将用户逻辑地址空间也分成同样大小的页面,成为虚 拟空间的虚页面。 C、建立页表:有时称为页面表或页面映射表(PMT)。每个作业一 张,按虚页号进行登记,其基本的内容有特征位(表示该页是否 在内存、实页号以及对应外存的地址。 D、地址变换:将虚页面的逻辑地址转化为实页面的物理地址,在程 序执行时改变为物理地址,属于作业的动态重定位,一般由地址 转换机构(硬件)完成。 特点: 允许一个作业存放在不连续的内存块中而又能保证作业连续得以运行 ,既不需要移动内存中的信息,又可较好地解决零头。 优点: a、不要求作业存放在连续的内存块中,有效地解决零头。 b、允许用户作业不是一次集中装入内存而是根据需要调入,作业中 不常用部分不长期驻留内存,而本次运行的不用部分根本就不装 入内存。 c、提供了虚存,使用户作业地址空间不再受内存可用空间大小的限 制。 缺点: a、页式管理在内存的共享和保护方面还欠完善。 b、页面大小相同,位置不能动态增加。 c、往往需要多次缺页中断才能把所需的信息完整地调入内存。 段式存储管理的基本思想是:把程序按内容或过程(函数)关系 分成段,每段有自己的名字。一个用户作业或进程所包含的段对应于 一个二维线性虚拟空间,也就是一个二维虚拟存储器。段式管理程序 以段为单位分配内存,然后通过地址映射机构把段式虚拟存储地址转 化为内存中的实际地址。和页式管理一样,段式管理也采用只把那些 经常访问的段驻留内存,而把那些在将来一段时间内不被访问的段放 在外存,待需要时自动调入内存的方法实现二维虚拟存储器。按照作 业的逻辑单位--段,来分配内存,适合程序的逻辑结构,方便用户设 计程序。 段式存储管理的工作原理: A、采用二维地址空间,如段号(S)、页号(P)和页内单元号(D); B、系统建两张表格每一作业一张段表,每一段建立一张页表,段表 指出该段的页表在内存中的位置; C、地址变换机构类似页式机制,只是前面增加一项段号。 特点: a、每一段分成若干页,再按页式管理,页间不要求连续; b、用分段方法分配管理作业,用分页方法分配管理内存; 优点: 便于段的共享和保护、段的动态增长以及动态连接。 缺点: 为了消除零头和允许段的动态增长,需要花费CPU的大量时间在内存 中移动作业的分段,而且段的大小也给外存管理带来困难。

以上就是关于根据“最小4K地址为系统程序区”这句话,怎么确定二进制范围全部的内容,包括:根据“最小4K地址为系统程序区”这句话,怎么确定二进制范围、可编程控制器的内部存储器包括哪两部分,各存储什么内容。、怎么用程序判断街道相邻等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10626817.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存