这是我们计算机系算法设计课的实验课程,下面是动态规划内容:
实验四:动态规划
实验目的:理解动态规划的基本思想,理解动态规划算法的两个基本要素最优子结构性质和子问题的重叠性质。熟练掌握典型的动态规划问题。掌握动态规划思想分析问题的一般方法,对较简单的问题能正确分析,设计出动态规划算法,并能快速编程实现。
实验内容:编程实现讲过的例题:最长公共子序列问题、矩阵连乘问题、凸多边形最优三角剖分问题、电路布线问题等。本实验中的问题,设计出算法并编程实现。
习题
1. 最长公共子序列
一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X=<x1, x2,…, xm>,则另一序列Z=<z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列 <i1, i2,…, ik>,使得对于所有j=1,2,…,k有
解答如下:
a) 最长公共子序列的结构
若用穷举搜索法,耗时太长,算法需要指数时间。
易证最长公共子序列问题也有最优子结构性质
设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>,则:
i 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;
ii 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;
iii 若xm≠yn且zk≠yn ,则Z是X和Yn-1的最长公共子序列。
其中Xm-1=<x1, x2, …, xm-1>,Yn-1=<y1, y2, …, yn-1>,Zk-1=<z1, z2, …, zk-1>。
最长公共子序列问题具有最优子结构性质。
b) 子问题的递归结构
由最长公共子序列问题的最优子结构性质可知,要找出X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。当xm≠yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者即为X和Y的一个最长公共子序列。
由此递归结构容易看到最长公共子序列问题具有子问题重叠性质。例如,在计算X和Y的最长公共子序列时,可能要计算出X和Yn-1及Xm-1和Y的最长公共子序列。而这两个子问题都包含一个公共子问题,即计算Xm-1和Yn-1的最长公共子序列。
我们来建立子问题的最优值的递归关系。用c[i,j]记录序列Xi和Yj的最长公共子序列的长度。其中Xi=<x1, x2, …, xi>,Yj=<y1, y2, …, yj>。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列,故c[i,j]=0。建立递归关系如下:
c) 计算最优值
由于在所考虑的子问题空间中,总共只有θ(mn)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。
计算最长公共子序列长度的动态规划算法LCS_LENGTH(X,Y)以序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>作为输入。输出两个数组c[0m ,0n]和b[1m ,1n]。其中c[i,j]存储Xi与Yj的最长公共子序列的长度,b[i,j]记录指示c[i,j]的值是由哪一个子问题的解达到的,这在构造最长公共子序列时要用到。最后,X和Y的最长公共子序列的长度记录于c[m,n]中。
程序如下:
#include<stdioh>
#include<stringh>
int lcs_length(char x[], char y[]);
int main()
{
char x[100],y[100];
int len;
while(1)
{
scanf("%s%s",x,y);
if(x[0]=='0') //约定第一个字符串以‘0’开始表示结束
break;
len=lcs_length(x,y);
printf("%d\n",len);
}
}
int lcs_length(char x[], char y[] )
{
int m,n,i,j,l[100][100];
m=strlen(x);
n=strlen(y);
for(i=0;i<m+1;i++)
l[i][0]=0;
for(j=0;j<n+1;j++)
l[0][j]=0;
for(i=1;i<=m;i++)
for(j=1;j<=n;j++)
if(x[i-1]==y[j-1]) //i,j从1开始,但字符串是从0开始
l[i][j]=l[i-1][j-1]+1;
else if(l[i][j-1]>l[i-1][j])
l[i][j]=l[i][j-1];
else
l[i][j]=l[i-1][j];
return l[m][n];
}
由于每个数组单元的计算耗费Ο(1)时间,算法lcs_length耗时Ο(mn)。
思考:空间能节约吗?
2. 计算矩阵连乘积
在科学计算中经常要计算矩阵的乘积。矩阵A和B可乘的条件是矩阵A的列数等于矩阵B的行数。若A是一个p×q的矩阵,B是一个q×r的矩阵,则其乘积C=AB是一个p×r的矩阵。由该公式知计算C=AB总共需要pqr次的数乘。其标准计算公式为:
现在的问题是,给定n个矩阵{A1,A2,…,An}。其中Ai与Ai+1是可乘的,i=1,2,…,n-1。要求计算出这n个矩阵的连乘积A1A2…An。
递归公式:
程序如下:
#include<stdioh>
int main()
{
int p[101],i,j,k,r,t,n;
int m[101][101]; //为了跟讲解时保持一致数组从1开始
int s[101][101]; //记录从第i到第j个矩阵连乘的断开位置
scanf("%d",&n);
for(i=0;i<=n;i++)
scanf("%d",&p[i]); //读入p[i]的值(注意:p[0]到p[n]共n+1项)
for(i=1;i<=n;i++) //初始化m[i][i]=0
m[i][i]=0;
for(r=1;r<n;r++) //r为i、j相差的值
for(i=1;i<n;i++) //i为行
{
j=i+r; //j为列
m[i][j]=m[i+1][j]+p[i-1]p[i]p[j]; //给m[i][j]赋初值
s[i][j]=i;
for(k=i+1;k<j;k++)
{
t=m[i][k]+m[k+1][j]+p[i-1]p[k]p[j];
if(t<m[i][j])
{
m[i][j]=t; //m[i][j]取最小值
s[i][j]=k;
}
}
}
printf("%d",m[1][n]);
}
3. 凸多边形的最优三角剖分
多边形是平面上一条分段线性的闭曲线。也就是说,多边形是由一系列首尾相接的直线段组成的。组成多边形的各直线段称为该多边形的边。多边形相接两条边的连接点称为多边形的顶点。若多边形的边之间除了连接顶点外没有别的公共点,则称该多边形为简单多边形。一个简单多边形将平面分为3个部分:被包围在多边形内的所有点构成了多边形的内部;多边形本身构成多边形的边界;而平面上其余的点构成了多边形的外部。当一个简单多边形及其内部构成一个闭凸集时,称该简单多边形为凸多边形。也就是说凸多边形边界上或内部的任意两点所连成的直线段上所有的点均在该凸多边形的内部或边界上。
通常,用多边形顶点的逆时针序列来表示一个凸多边形,即P=<v0 ,v1 ,… ,vn-1>表示具有n条边v0v1,v1v2,… ,vn-1vn的一个凸多边形,其中,约定v0=vn 。
若vi与vj是多边形上不相邻的两个顶点,则线段vivj称为多边形的一条弦。弦 将多边形分割成凸的两个子多边形<vi ,vi+1 ,… ,vj>和<vj ,vj+1 ,… ,vi>。多边形的三角剖分是一个将多边形分割成互不重迭的三角形的弦的集合T。如图是一个凸多边形的两个不同的三角剖分。
凸多边形最优三角剖分的问题是:给定一个凸多边形P=<v0 ,v1 ,… ,vn-1>以及定义在由多边形的边和弦组成的三角形上的权函数ω。要求确定该凸多边形的一个三角剖分,使得该三角剖分对应的权即剖分中诸三角形上的权之和为最小。
可以定义三角形上各种各样的权函数W。例如:定义ω(△vivjvk)=|vivj|+|vivk|+|vkvj|,其中,|vivj|是点vi到vj的欧氏距离。相应于此权函数的最优三角剖分即为最小弦长三角剖分。(注意:解决此问题的算法必须适用于任意的权函数)
4. 防卫导d
一种新型的防卫导d可截击多个攻击导d。它可以向前飞行,也可以用很快的速度向下飞行,可以毫无损伤地截击进攻导d,但不可以向后或向上飞行。但有一个缺点,尽管它发射时可以达到任意高度,但它只能截击比它上次截击导d时所处高度低或者高度相同的导d。现对这种新型防卫导d进行测试,在每一次测试中,发射一系列的测试导d(这些导d发射的间隔时间固定,飞行速度相同),该防卫导d所能获得的信息包括各进攻导d的高度,以及它们发射次序。现要求编一程序,求在每次测试中,该防卫导d最多能截击的进攻导d数量,一个导d能被截击应满足下列两个条件之一:
a)它是该次测试中第一个被防卫导d截击的导d;
b)它是在上一次被截击导d的发射后发射,且高度不大于上一次被截击导d的高度的导d。
输入数据:第一行是一个整数n,以后的n各有一个整数表示导d的高度。
输出数据:截击导d的最大数目。
分析:定义l[i]为选择截击第i个导d,从这个导d开始最多能截击的导d数目。
由于选择了第i枚导d,所以下一个要截击的导dj的高度要小于等于它的高度,所以l[i]应该等于从i+1到n的每一个j,满足h[j]<=h[i]的j中l[j]的最大值。
程序如下:
#include<stdioh>
int main()
{
int i,j,n,max,h[100],l[100];
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&h[i]);
l[n-1]=1;
for(i=n-2;i>=0;i--)
{
max=0;
for(j=i+1;j<n;j++)
if(h[i]>h[j]&&max<l[j])
max=l[j];
l[i]=max+1;
}
printf("%d",l[0]);
}
5. 石子合并
在一个圆形 *** 场的四周摆放着n堆石子(n<= 100),现要将石子有次序地合并成一堆。规定每次只能选取相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。编一程序,由文件读入堆栈数n及每堆栈的石子数(<=20)。
选择一种合并石子的方案,使得做n-1次合并,得分的总和最小;
输入数据:
第一行为石子堆数n;
第二行为每堆的石子数,每两个数之间用一个空格分隔。
输出数据:
从第一至第n行为得分最小的合并方案。第n+1行是空行从第n+2行到第2n+1行是得分最大合并方案。每种合并方案用n行表示,其中第i行(1<=i<=n)表示第i次合并前各堆的石子数(依顺时针次序输出,哪一堆先输出均可)。要求将待合并的两堆石子数以相应的负数表示。
Sample Input
4
4 5 9 4
Sample Output
-4 5 9 -4
-8 -5 9
-13 -9
22 4 -5 -9 4
4 -14 -4
-4 -18
22
6. 最小代价子母树
设有一排数,共n个,例如:22 14 7 13 26 15 11。任意2个相邻的数可以进行归并,归并的代价为该两个数的和,经过不断的归并,最后归为一堆,而全部归并代价的和称为总代价,给出一种归并算法,使总代价为最小。
输入、输出数据格式与“石子合并”相同。
Sample Input
4
12 5 16 4
Sample Output
-12 -5 16 4
17 -16 -4
-17 -20
37
7. 商店购物
某商店中每种商品都有一个价格。例如,一朵花的价格是2 ICU(ICU 是信息学竞赛的货币的单位);一个花瓶的价格是5 ICU。为了吸引更多的顾客,商店提供了特殊优惠价。特殊优惠商品是把一种或几种商品分成一组。并降价销售。例如:3朵花的价格不是6而是5 ICU;2个花瓶加1朵花是10 ICU不是12 ICU。
编一个程序,计算某个顾客所购商品应付的费用。要充分利用优惠价以使顾客付款最小。请注意,你不能变更顾客所购商品的种类及数量,即使增加某些商品会使付款总数减小也不允许你作出任何变更。假定各种商品价格用优惠价如上所述,并且某顾客购买物品为:3朵花和2个花瓶。那么顾客应付款为14 ICU因为:
1朵花加2个花瓶优惠价:10 ICU
2朵花正常价:4 ICU
输入数据:第一个文件INPUT.TXT描述顾客所购物品(放在购物筐中);第二个文件描述商店提供的优惠商品及价格(文件名为OFF ER.TXT)。 两个文件中都只用整数。
第一个文件INPUT.TXT的格式为:第一行是一个数字B(0≤B≤5),表示所购商品种类数。下面共B行,每行中含3个数C,K,P。 C 代表商品的编码(每种商品有一个唯一的编码),1≤C≤999。K代表该种商品购买总数,1≤K≤5。P 是该种商品的正常单价(每件商品的价格),1≤P≤999。请注意,购物筐中最多可放55=25件商品。
第二个文件OFFER.TXT的格式为:第一行是一个数字S(0≤S≤9 9),表示共有S 种优惠。下面共S行,每一行描述一种优惠商品的组合中商品的种类。下面接着是几个数字对(C,K),其中C代表商品编码,1≤C≤9 99。K代表该种商品在此组合中的数量,1≤K≤5。本行最后一个数字P(1≤ P≤9999)代表此商品组合的优惠价。当然, 优惠价要低于该组合中商品正常价之总和。
输出数据:在输出文件OUTPUT.TXT中写 一个数字(占一行),该数字表示顾客所购商品(输入文件指明所购商品)应付的最低货款。
8. 旅游预算
一个旅行社需要估算乘汽车从某城市到另一城市的最小费用,沿路有若干加油站,每个加油站收费不一定相同。旅游预算有如下规则:
若油箱的油过半,不停车加油,除非油箱中的油不可支持到下一站;每次加油时都加满;在一个加油站加油时,司机要花费2元买东西吃;司机不必为其他意外情况而准备额外的油;汽车开出时在起点加满油箱;计算精确到分(1元=100分)。编写程序估计实际行驶在某路线所需的最小费用。
输入数据:从当前目录下的文本文件“routedat”读入数据。按以下格式输入若干旅行路线的情况:
第一行为起点到终点的距离(实数)
第二行为三个实数,后跟一个整数,每两个数据间用一个空格隔开。其中第一个数为汽车油箱的容量(升),第二个数是每升汽油行驶的公里数,第三个数是在起点加满油箱的费用,第四个数是加油站的数量。(〈=50)。接下去的每行包括两个实数,每个数据之间用一个空格分隔,其中第一个数是该加油站离起点的距离,第二个数是该加油站每升汽油的价格(元/升)。加油站按它们与起点的距离升序排列。所有的输入都有一定有解。
输出数据:答案输出到当前目录下的文本文件“routeout”中。该文件包括两行。第一行为一个实数和一个整数,实数为旅行的最小费用,以元为单位,精确到分,整数表示途中加油的站的N。第二行是N个整数,表示N个加油的站的编号,按升序排列。数据间用一个空格分隔,此外没有多余的空格。
Sample Input
5163 3809 1
157 221 2087 3 2
1254 1259
2979 1129
3452 0999
Sample Output
3809 1
2
9. 皇宫看守
太平王世子事件后,陆小凤成了皇上特聘的御前一品侍卫。皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状;某些宫殿间可以互相望见。大内保卫森严,三步一岗,五步一哨,每个宫殿都要有人全天候看守,在不同的宫殿安排看守所需的费用不同。可是陆小凤手上的经费不足,无论如何也没法在每个宫殿都安置留守侍卫。
请你编程计算帮助陆小凤布置侍卫,在看守全部宫殿的前提下,使得花费的经费最少。
输入数据:输入数据由文件名为intputtxt的文本文件提供。输入文件中数据表示一棵树,描述如下:
第1行 n,表示树中结点的数目。
第2行至第n+1行,每行描述每个宫殿结点信息,依次为:该宫殿结点标号i(0<i<=n),在该宫殿安置侍卫所需的经费k,该边的儿子数m,接下来m个数,分别是这个节点的m个儿子的标号r1,r2,,rm。
对于一个n(0 < n <= 1500)个结点的树,结点标号在1到n之间,且标号不重复。
输出数据:输出到outputtxt文件中。输出文件仅包含一个数,为所求的最少的经费。
如右图的输入数据示例:
Sample Input
6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0
Sample Output
25
10. 游戏室问题
有一个游戏室里有多个游戏室,并且这每个游戏室里还有多个游戏室,每个游戏室里面还有游戏室,依此类推。进入每个游戏室都可得到一定的快乐,每个游戏室的门票价格都大于等于0,都有一个快乐值,并且只有进入了一个游戏室,才可以进入它内部的游戏室,小明现在有n元钱,问最大能得到多少的快乐。
11. 基因问题
已知两个基因序列如s:AGTAGT;t:ATTAG。现要你给序列中增加一些空格后,首先使得两个序列的长度相等,其次两个串对应符号匹配得到的值最大。基因只有四种分别用A、G、C、T表示,匹配中不允许两个空格相对应,任意两符号的匹配值由下表给出:
A G C T 〕
A 5 -2 -1 -2 -4
G -2 5 -4 -3 -2
C -1 -4 5 -5 -1
T -2 -3 -5 5 -2
〕 -4 -2 -1 -2
提示:定义问题l[i][j]为取第一个序列的前i项,和第二个序列的前j项,这两个序列加空格匹配的最大值。它的最优值与三个子问题有关,l[i-1][j-1]、l[i][j-1]、l[i-1][j]。
建立递归公式如下:
其中m[0][t[j]表示表中空格和t[j]匹配的对应值。
思考:本问题的初始化。
12. 田忌赛马
田忌与齐王赛马,双方各有n匹马参赛(n<=100),每场比赛赌注为1两黄金,现已知齐王与田忌的每匹马的速度,并且齐王肯定是按马的速度从快到慢出场,现要你写一个程序帮助田忌计算他最好的结果是赢多少两黄金(输用负数表示)。
分析:先排序,齐王的马的速度放在数组a中,田忌的马的速度放在数组b中。本问题应用的算法是动态规划和贪心算法相结合解决的。从两人的最弱的马入手:
若田忌的马快,就让这两匹马比赛;
若田忌的马慢,干脆就让他对付齐王最快的马;
若两匹马的速度相等,这时有两种选择方案,或者它俩比赛,或者对付齐王最快的马。
定义子问题:l(i,j)为齐王的从第i匹马开始的j匹马与田忌的最快的j匹马比赛,田忌所获得的最大收益。
则:
程序具体实现时,为了适合c数据从0开始,稍加变动,定义子问题:l(i,j)为齐王的从第i匹马开始到第i+j匹马共j+1匹马与田忌的最快的j+1匹马比赛,田忌所获得的最大收益。初始化时:l[i][0]表示齐王的第i匹马与田忌最快的马比赛的结果。
程序如下:
#include<stdioh>
void readdata();
void init();
int n,a[100],b[100],l[100][100];
int main()
{
int i,j;
readdata();
init();
for(i=n-2;i>=0;i--)
for(j=1;j<n-i;j++)
if(a[i+j]<b[j])
l[i][j]=l[i][j-1]+1;
else if(a[i+j]>b[j])
l[i][j]=l[i+1][j-1]-1;
else if(l[i+1][j-1]-1>l[i][j-1])
l[i][j]=l[i+1][j-1]-1;
else
l[i][j]=l[i][j-1];
printf("%d",l[0][n-1]);
}
void readdata()
{
int i;
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0;i<n;i++)
scanf("%d",&b[i]);
}
void init()
{
int i;
// qsort(a,n); //略
for(i=0;i<n;i++)
{
if(a[i]<b[0])
l[i][0]=1;
else if(a[i]==b[0])
l[i][0]=0;
else
l[i][0]=-1;
}
}
实例讲解MYSQL数据库的查询优化技术
作者:佚名 文章来源:未知 点击数:2538 更新时间:2006-1-19
数据库系统是管理信息系统的核心,基于数据库的联机事务处理(OLTP)以及联机分析处理(OLAP)是银行、企业、政府等部门最为重要的计算机应用之一。从大多数系统的应用实例来看,查询 *** 作在各种数据库 *** 作中所占据的比重最大,而查询 *** 作所基于的SELECT语句在SQL语句中又是代价最大的语句。举例来说,如果数据的量积累到一定的程度,比如一个银行的账户数据库表信息积累到上百万甚至上千万条记录,全表扫描一次往往需要数十分钟,甚至数小时。如果采用比全表扫描更好的查询策略,往往可以使查询时间降为几分钟,由此可见查询优化技术的重要性。
笔者在应用项目的实施中发现,许多程序员在利用一些前端数据库开发工具(如PowerBuilder、Delphi等)开发数据库应用程序时,只注重用户界面的华丽,并不重视查询语句的效率问题,导致所开发出来的应用系统效率低下,资源浪费严重。因此,如何设计高效合理的查询语句就显得非常重要。本文以应用实例为基础,结合数据库理论,介绍查询优化技术在现实系统中的运用。
分析问题
许多程序员认为查询优化是DBMS(数据库管理系统)的任务,与程序员所编写的SQL语句关系不大,这是错误的。一个好的查询计划往往可以使程序性能提高数十倍。查询计划是用户所提交的SQL语句的集合,查询规划是经过优化处理之后所产生的语句集合。DBMS处理查询计划的过程是这样的:在做完查询语句的词法、语法检查之后,将语句提交给DBMS的查询优化器,优化器做完代数优化和存取路径的优化之后,由预编译模块对语句进行处理并生成查询规划,然后在合适的时间提交给系统处理执行,最后将执行结果返回给用户。在实际的数据库产品(如Oracle、Sybase等)的高版本中都是采用基于代价的优化方法,这种优化能根据从系统字典表所得到的信息来估计不同的查询规划的代价,然后选择一个较优的规划。虽然现在的数据库产品在查询优化方面已经做得越来越好,但由用户提交的SQL语句是系统优化的基础,很难设想一个原本糟糕的查询计划经过系统的优化之后会变得高效,因此用户所写语句的优劣至关重要。系统所做查询优化我们暂不讨论,下面重点说明改善用户查询计划的解决方案。
解决问题
下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。
1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁 *** 作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:
●索引中不包括一个或几个待排序的列;
●group by或order by子句中列的次序与索引的次序不一样;
●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序 *** 作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
4.避免相关子查询
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序 *** 作,而且在其他方面还能简化优化器的工作。例如:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
AND custpostcode>“98000”
ORDER BY custname
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
ORDER BY custname
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。
7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的 *** 作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。
实例分析
下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:
1.part表
零件号 零件描述其他列
(part_num) (part_desc)(other column)
102,032 Seageat 30G disk ……
500,049 Novel 10M network card……
……
2.vendor表
厂商号厂商名其他列
(vendor _num) (vendor_name) (other column)
910,257 Seageat Corp ……
523,045 IBM Corp ……
……
3.parven表
零件号 厂商号 零件数量
(part_num) (vendor_num) (part_amount)
102,032910,2573,450,000
234,423321,0014,000,000
……
下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:
SELECT part_desc,vendor_name,part_amount
FROM part,vendor,parven
WHERE partpart_num=parvenpart_num
AND parvenvendor_num = vendorvendor_num
ORDER BY partpart_num
如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:
表 行尺寸 行数量 每页行数量 数据页数量
(table) (row size) (Row count) (Rows/Pages) (Data Pages)
part150 10,00025 400
Vendor 150 1,000 25 40
Parven 13 15,000300 50
索引 键尺寸 每页键数量 页面数量
(Indexes) (Key Size) (Keys/Page) (Leaf Pages)
part 4500 20
Vendor4500 2
Parven8250 60
看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取15万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为504万次。
实际上,我们可以通过使用临时表分3个步骤来提高查询效率:
1.从parven表中按vendor_num的次序读数据:
SELECT part_num,vendor_num,price
FROM parven
ORDER BY vendor_num
INTO temp pv_by_vn
这个语句顺序读parven(50页),写一个临时表(50页),并排序。假定排序的开销为200页,总共是300页。
2.把临时表和vendor表连接,把结果输出到一个临时表,并按part_num排序:
SELECT pv_by_vn,* vendorvendor_num
FROM pv_by_vn,vendor
WHERE pv_by_vnvendor_num=vendorvendor_num
ORDER BY pv_by_vnpart_num
INTO TMP pvvn_by_pn
DROP TABLE pv_by_vn
这个查询读取pv_by_vn(50页),它通过索引存取vendor表15万次,但由于按vendor_num次序排列,实际上只是通过索引顺序地读vendor表(40+2=42页),输出的表每页约95行,共160页。写并存取这些页引发5*160=800次的读写,索引共读写892页。
3.把输出和part连接得到最后的结果:
SELECT pvvn_by_pn*,partpart_desc
FROM pvvn_by_pn,part
WHERE pvvn_by_pnpart_num=partpart_num
DROP TABLE pvvn_by_pn
这样,查询顺序地读pvvn_by_pn(160页),通过索引读part表15万次,由于建有索引,所以实际上进行1772次磁盘读写,优化比例为30∶1。笔者在Informix Dynamic
Sever上做同样的实验,发现在时间耗费上的优化比例为5∶1(如果增加数据量,比例可能会更大)。
小结
20%的代码用去了80%的时间,这是程序设计中的一个著名定律,在数据库应用程序中也同样如此。我们的优化要抓住关键问题,对于数据库应用程序来说,重点在于SQL的执行效率。查询优化的重点环节是使得数据库服务器少从磁盘中读数据以及顺序读页而不是非顺序读页。
可以查看说明书,根据说明书上的指示进行设置。另外,下面的链接就是电子说明书的下载地址,点击即可下载相应的说明书。
美的说明书
自清洗 ,洗净内外桶,杜绝二次污染 自编程设计,自由调节 24小时预约,有效避免用水用电高峰 剩余时间显示,洗涤进程一目了然 多种分类洗涤,满足各种洗衣需求:洗衣机1、说明书 (含保修卡)1、进水管1、隔音板1。
该洗衣机比较智能,是美的旗下比较好的一款洗衣机,也比较好用,是现在智能家居的一款领先产品。
以上就是关于C语言程序,输入N个点的坐标,判断能否构成凸多边形全部的内容,包括:C语言程序,输入N个点的坐标,判断能否构成凸多边形、数据库设计过程中,对于大批量的数据如何进行数据库优化、美的mb90vn13怎么设置程序等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)