文件服务器是指在计算机网络中,以文件数据的存储与共享为主要功能的服务器,负责中央存储和数据文件管理,处于同一网络环境。数据库服务器因为数据文件的重要性及数据的文件都较大,数据库服务器一般是指运行在网络中的一台或多台服务器和数据库管理系统软件,邮件服务器。
文件服务器(Fileserver),又称档案伺服器,是指在计算机网络环境中,所有用户都可访问的文件存储设备,是一种专供其他电脑检索文件和存储的特殊电脑。文件服务器通常比一般的个人电脑拥有更大的存储容量,并具有一些其他的功能,如磁盘镜像、多个网络接口。
服务器CPU,顾名思义,就是在服务器上使用的CPU(Center Process Unit中央处理器)。众所周知,服务器是网络中的重要设备,要接受少至几十人、多至成千上万人的访问,因此对服务器具有大数据量的快速吞吐、超强的稳定性、长时间运行等严格要求。下面是我收集整理的服务器cpu是什么,欢迎阅读。
服务器的中央处理器(CPU),在内部结构上是跟台式机的差不多,它们都是由运算器和控制器组成,CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。当然工作原理也是一样。随着两者的需求和发展,台式机和服务器的处理器在技术、性能指标等各方面都存在并存的现象,一个最明显的现象,像Intel的奔腾系列产品,一直应用于服务器的低端领域。但不代表着服务器CPU与台式机将会完全一样,下面内容会让你对服务器CPU有个全方位的了解……
一、产品篇
厂商
32bit 64bit
CISC型 VLIM型 RISC型
IA-32 X86-64 IA-64
AMD64 EM64T
Intel Pentium、Xeon Nocona Itanium
AMD Athlon MP Opteron
Transmeta
(全美达) Efficeon
IBM/Apple POWER、POWERPC
HP PA-RISC、Alpha
SGI MIPS
SUN UltraSPARC
上面简单把服务器处理器列了一下表,我们可以很清晰看出,服务器处理器按CPU的指令系统来区分,有CISC型CPU和RISC型CPU两类,后来出现了一种64位的VLIM指令系统的CPU,这种架构也叫做“IA-64”。目前基于这种指令架构的MPU有Intel的IA-64、EM64T和AMD的x86-64。RISC型的CPU是我们比较不熟悉的'类型,下面一一介绍;
IBM:
IBM 的四条处理器产品线 —— POWER 体系结构,PowerPC 系列的处理器,Star 系列(很少用于服务器中),以及 IBM 大型机上所采用的芯片
POWER 是 Power Optimization With Enhanced RISC 的缩写,是 IBM 的很多服务器、工作站和超级计算机的主要处理器。POWER 芯片起源于 801 CPU,是第二代 RISC 处理器。POWER 芯片在 1990 年被 RS 或 RISC System/6000 UNIX 工作站(现在称为 eServer 和 pSeries)采用,POWER 的产品有 POWER1、POWER2、POWER3、POWER4,现在最高端的是 POWER5。POWER5 处理器是目前单个芯片中性能最好的芯片。POWER6计划 2006 年发布。
PowerPC 是 Apple、IBM 和摩托罗拉(Motorola)联盟(也称为 AIM 联盟)的产物,它基于 POWER 体系结构,但是与 POWER 又有很多的不同。例如,PowerPC 是开放的,它既支持高端的内存模型,也支持低端的内存模型,而 POWER 芯片是高端的。最初的 PowerPC 设计也着重于浮点性能和多处理能力的研究。当然,它也包含了大部分 POWER 指令。很多应用程序都能在 PowerPC 上正常工作,这可能需要重新编译以进行一些转换。从 2000 年开始,摩托罗拉和 IBM 的 PowerPC 芯片都开始遵循 Book E 规范,这样可以提供一些增强特性,从而使得 PowerPC 对嵌入式处理器应用(例如网络和存储设备,以及消费者设备)更具有吸引力。PowerPC 体系结构的最大一个优点是它是开放的:它定义了一个指令集(ISA),并且允许任何人来设计和制造与 PowerPC 兼容的处理器;为了支持 PowerPC 而开发的软件模块的源代码都可以自由使用。最后,PowerPC 核心的精简为其他部件预留了很大的空间,从新添加缓存到协处理都是如此,这样可以实现任意的设计复杂度。IBM 的 4 条服务器产品线中有两条与 Apple 计算机的桌面和服务器产品线同样基于 PowerPC 体系结构,分别是 Nintendo GameCube 和 IBM 的“蓝色基因(Blue Gene)”超级计算机。现在,三种主要的 PowerPC 系列是嵌入式 PowerPC 400 系列以及独立的 PowerPC 700 和 PowerPC 900 系列。而PowerPC 600 系列,是第一个 PowerPC 芯片。它是 POWER 和 PowerPC 体系结构之间的桥梁。现在的PowerPC970,采用013微米SOI工艺制造,其内只有一颗CPU核心,带有512K 芯片内L2 cache。
HP:
HP(惠普)公司自已开发、研制的适用于服务器的RISC芯片——PA-RISC,于1986年问世。目前,HP主要开发64位超标量处理器PA-8000系列。第一款芯片的型号为PA-8000,主频为180MHz,后来陆续推出PA-8200、PA-8500、PA-8600、PA-8700、PA-8800型号。还有一个就是HP的“私生子”Alpha。(Alpha处理器最早由DEC公司设计制造,在Compaq公司收购DEC之后,Alpha处理器继续得到发展,后来又被惠普公司收购)
HP于2002年开始就公布了其两大RISC处理器——PA-RISC和Alpha的发展计划,其中PA-RISC与Alpha处理器至少要发展到2006年,对基于其上的服务器的服务支持将至少持续到2011年。2006年,HP将会推出PA-8900。而对于Alpha的发展,惠普公司于已经于2004年八月份发布了其面向AlphaServer Unix服务器的最后一款处理器产品——EV7z。
SUN:
1987年,SUN和TI公司合作开发了RISC微处理器——SPARC。Sun公司以其性能优秀的工作站闻名,这些工作站的心脏全都是采用Sun公司自己研发的Sparc芯片。SPARC微处理器最突出的特点就是它的可扩展性,这是业界出现的第一款有可扩展性功能的微处理。SPARC的推出为SUN赢得了高端微处理器市场的领先地位。
1999年6月,UltraSPARC III首次亮相。它采用先进的018微米工艺制造,全部采用64位结构和VIS指令集,时钟频率从600MHz起,可用于高达1000个处理器协同工作的系统上。UltraSPARC III和Solaris *** 作系统的应用实现了百分之百的二进制兼容,完全支持客户的软件投资,得到众多的独立软件供应商的支持。
根据Sun公司未来的发展规划,在64位UltraSparc处理器方面,主要有3个系列,首先是可扩展式s系列,主要用于高性能、易扩展的多处理器系统。目前UltraSparc Ⅲs的频率已经达到750GHz。将推出UltraSparc Ⅳs和UltraSparc Ⅴs等型号。其中UltraSparc Ⅳs的频率为1GHz,UltraSparc Ⅴs则为15GHz。其次是集成式i系列,它将多种系统功能集成在一个处理器上,为单处理器系统提供了更高的效益。已经推出的UltraSparc Ⅲi的频率达到700GHz,未来的UltraSparc Ⅳi的频率将达到1GHz。最后是嵌入式e系列,为用户提供理想的性能价格比,嵌入式应用包括瘦客户机、电缆调制解调器和网络接口等。Sun公司还将推出主频300、400、500MHz等版本的处理器。
SGI
MIPS技术公司是一家设计制造高性能、高档次及嵌入式32位和64位处理器的厂商,在RISC处理器方面占有重要地位。1984年,MIPS计算机公司成立。1992年,SGI收购了MIPS计算机公司。1998年,MIPS脱离SGI,成为MIPS技术公司。
MIPS公司设计RISC处理器始于二十世纪八十年代初,1986年推出R2000处理器,1988年推R3000处理器,1991年推出第一款64位商用微处器R4000。之后又陆续推出R8000(于1994年)、R10000(于1996年)和R12000(于1997年)等型号。
随后,MIPS公司的战略发生变化,把重点放在嵌入式系统。1999年,MIPS公司发布MIPS32和MIPS64架构标准,为未来MIPS处理器的开发奠定了基础。新的架构集成了所有原来NIPS指令集,并且增加了许多更强大的功能。MIPS公司陆续开发了高性能、低功耗的32位处理器内核(core)MIPS324Kc与高性能64位处理器内核MIPS64 5Kc。2000年,MIPS公司发布了针对MIPS32 4Kc的版本以及64位MIPS 64 20Kc处理器内核。
MIPS技术公司是一家设计制造高性能、高档次及嵌入式32位和64位处理器的厂商。1986年推出R2000处理器,1988年推出R3000处理器,1991年推出第一款64位商用微处理器R4000。之后,又陆续推出R8000(于1994年)、R10000(于1996年)和R12000(于1997年)等型号。1999年,MIPS公司发布MIPS 32和MIPS 64架构标准。2000年,MIPS公司发布了针对MIPS 32 4Kc的新版本以及未来64位MIPS 64 20Kc处理器内核。
,仅完成安装系统、应用程序并上架后便拍拍屁股离开,远不能发挥服务器性能。服务器需要通过周期性的监控来确保硬件投资得到了预期回报--并对潜在问题提出告警,比如资源不足或硬件故障。性能监控工具可以提供大量的可用信息,但需要确保工具被正确安装与运行。本文将介绍可以帮助管理员们从系统性能监控中获得最大利益的技巧。实现精确的性能监控
如果采集的信息存在错误,监控便毫无用处,所以确保数据的准确性是你得采取的第一步。准确性包括许多方面,如互通性、采样窗口、工具架构、虚拟化感知与校准。
互通性。在此讨论中,互通性是性能监控工具的基本功能,能够从数据中心内各种硬件与部件中访问与读取数据源。在部署了同一厂商产品线设备的同质环境内,利用集成在硬件中的内置挂钩,监控工具可以发挥极大优势。通过这些挂钩,工具可以抓取设备的详细运行信息。
在异质环境下,监控则成为了另外一种挑战,因为工具与硬件可能无法很好匹配。产商提供的工具可能可以提供一些硬件部件的特殊信息,而其他工具可能无法保障一致性。第三方性能监控工具可能无法检测每个监控器或硬件的细微差别,它们更依赖于 *** 作系统级的数据,而这些数据通常缺乏足够的颗粒度。在某些情况下,监控数据可能丢失或失真,从而降低系统性能监控的可用性。
工具与硬件之前的数据差异需要全面测试。例如,在购买工具之前,先测试并验证兼容性,在经过较长时间的可用性验证项目后,再开始将工具由测试环境部署至生产环境中。但问题同样从开始购买延伸至未来产品升级或技术刷新周期。当你更换硬件或升级工具,你需要测试监控工具的互通性来确保性能监控工具依旧可以正常工作并提供准确数据。
采样。准确性同样依赖于收集数据用的采样窗口。当负载与运行参数可能一直处于波动状态时,数据准确性将十分重要。理想情况下,性能监控工具可以捕捉整台服务器的运行周期。技巧在于决定运行周期是怎样的。这依赖于每个负载与宿主主机是如何被使用的。例如,每台服务器的内存性能可能需要极快的采样率,而采样窗口需要跨越好几分钟。与此相反,观察某个合作HR系统的CPU使用情况可能需要已较低的频率捕捉数值,但采样窗口周期需要长达30天甚至更长。如何正确采样并没有标准答案,不同属性的 *** 作系统同样需要通过不同的比率与窗口灵活定义。
工具架构。性能监控工具通常需要在受监控系统上安装代理或额外驱动(即使是虚拟机)。代理具有优势也有不足。首先,它们十分有用,因为代理可以收集并传输许多重要信息,比无代理的监控工具提供更多监控参数。尽管如此,代理通常被作为软件客户端,将所有数据报告给中央服务器,中央服务器将收集与处理这些数据。所以每个代理都需要占用一定的计算资源,这可能在一定程度上影响整台服务器的负载性能。
我所在环境下所有计算机拥有两个代理, Chris Steffen,Kroll Factual Data的首席技术架构师说。一个应用程序代理监控我们所有应用程序的健康状况,而且我们还有System Center [Virtual Machine Manager]代理安装在所有虚拟机宿主上。
这些年来,关于代理的负面影响一直在降低,但它们所产生的影响一直在被评估,尤其在执行关键任务或对性能要求十分苛刻的负载上。不仅如此,Steffen同样表示,新兴的监控工具可以提供更多功能,包括自动化安装,重装或维护运行环境中的代理。
虚拟化感知。
虚拟化软件把应用负载从硬件中抽象化。当传统性能监控工具试图在虚拟化环境中报告,抽象层常常发生错误结果,因为老工具是同直接监控硬件,而不是通过控制计算资源的hypervisor。考虑到虚拟化技术的人气和重要性,管理员应该选择能监控虚拟化的监控工具。这样能让性能监控同时管到物理目标和虚拟目标,管理员可以才可以收集到精确的数据。
管理员们有时候还需要采集虚拟机与承载虚拟机的宿主服务器指标,Kleyman说。这种情况下,需要在虚拟化与物理层级别进行性能监控以确保最佳负载性能并保障用户体验。
传感器校准。需要忽视传感器本身的重要性。来自网络交换机或服务器的数字信信号常都是十分准确的。但是某些传感器,例如温度,湿度,空气流或其他环境类型的传感器通常是通过模拟信号传输,可能需要经常校对并定期更换电池来保证其长期稳定的工作。
最大化性能监控工具价值
如果没有正确使用,工具是无法产生价值的。在许许多多的案例中,性能监控工具已经被部署,但是没有清晰的规划来使用与分析所收集到的海量数据。工具则变成了管理员们用来抽查或不定期故障处理的简单工具;这是一种投资浪费。
性能监控工具报告同样可以作为能力规划的基础参考,或协助完成技术刷新项目。性能指标可以帮助展示RIO[投资回报率],Kleyman说。通过了解旧系统性能,并比对新款服务器性能,我们可以决定是否将钱投资在新设备上已提升计算性能并获得更长远的利益。
但Steffen同样建议用户多留个心眼,秉着信任,但要核查的态度来对待性能监控工具,有可能某些服务器监控工具已经被验证,与其他工具相比可以获得十分准确的数值,但如果用来监控网络设备则可能出现一些异常。好的业务决策需要有优质的数据进行支撑,而且若工具无法提供准确、可验证的结果,那样将很难给业务决策提供有力支持。
lg=t
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)