redis缓存原理是sql语句时key值,查询结果resultSet是value,当同一个查询语句访问时(select from t_product),只要曾经查询过,调用缓存直接返回resultSet,节省了数据库读取磁盘数据的时间。
redis的存储分为内存存储、磁盘存储和log文件三部分,配置文件中有三个参数对其进行配置。
save seconds updates,save配置,指出在多长时间内,有多少次更新 *** 作,就将数据同步到数据文件。这个可以多个条件配合,比如默认配置文件中的设置,就设置了三个条件。
appendonly yes/no ,appendonly配置,指出是否在每次更新 *** 作后进行日志记录,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为redis本身同步数据文件是按上面的save条件来同步的,所以有的数据会在一段时间内只存在于内存中。
扩展资料
redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用。它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便。
Redis支持主从同步。数据可以从主服务器向任意数量的从服务器上同步,从服务器可以是关联其他从服务器的主服务器。这使得Redis可执行单层树复制。
存盘可以有意无意的对数据进行写 *** 作。由于完全实现了发布/订阅机制,使得从数据库在任何地方同步树时,可订阅一个频道并接收主服务器完整的消息发布记录。同步对读取 *** 作的可扩展性和数据冗余很有帮助。
redis的官网地址,redisio。(域名后缀io属于国家域名,是british Indian Ocean territory,即英属印度洋领地)
Redis-Sentinel是redis官方推荐的高可用性解决方案,当用redis作master-slave的高可用时,如果master本身宕机,redis本身或者客户端都没有实现主从切换的功能。
而redis-sentinel就是一个独立运行的进程,用于监控多个master-slave集群,
自动发现master宕机,进行自动切换slave > master
每个Sentinel以每秒钟一次的频率向它所知的Master,Slave以及其他 Sentinel 实例发送一个 PING 命令
如果一个实例(instance)距离最后一次有效回复 PING 命令的时间超过 down-after-milliseconds 选项所指定的值, 则这个实例会被 Sentinel 标记为主观下线。
如果一个Master被标记为主观下线,则正在监视这个Master的所有 Sentinel 要以每秒一次的频率确认Master的确进入了主观下线状态。
当有足够数量的 Sentinel(大于等于配置文件指定的值)在指定的时间范围内确认Master的确进入了主观下线状态, 则Master会被标记为客观下线
在一般情况下, 每个 Sentinel 会以每 10 秒一次的频率向它已知的所有Master,Slave发送 INFO 命令
当Master被 Sentinel 标记为客观下线时,Sentinel 向下线的 Master 的所有 Slave 发送 INFO 命令的频率会从 10 秒一次改为每秒一次
若没有足够数量的 Sentinel 同意 Master 已经下线, Master 的客观下线状态就会被移除。
若 Master 重新向 Sentinel 的 PING 命令返回有效回复, Master 的主观下线状态就会被移除。
主观下线和客观下线
主观下线:Subjectively Down,简称 SDOWN,指的是当前 Sentinel 实例对某个redis服务器做出的下线判断。
客观下线:Objectively Down, 简称 ODOWN,指的是多个 Sentinel 实例在对Master Server做出 SDOWN 判断,并且通过 SENTINEL is-master-down-by-addr 命令互相交流之后,得出的Master Server下线判断,然后开启failover
SDOWN适合于Master和Slave,只要一个 Sentinel 发现Master进入了ODOWN, 这个 Sentinel 就可能会被其他 Sentinel 推选出, 并对下线的主服务器执行自动故障迁移 *** 作。
ODOWN只适用于Master,对于Slave的 Redis 实例,Sentinel 在将它们判断为下线前不需要进行协商, 所以Slave的 Sentinel 永远不会达到ODOWN。
Redis主从复制可将主节点数据同步给从节点,从节点此时有两个作用:
但是问题是:
那么这个问题,redis-sentinel就可以解决了
Redis的一个进程,但是不存储数据,只是监控redis
本实验是在测试环境下,因此只准备一台linux服务器用作环境!!
服务器环境,一台即可完成 *** 作
所有配置文件如下
总体redis配置文件如下,6379为master,6380和6381为slave
redis-6380conf slave配置文件详解,6381端口的配置文件,仅仅和6380端口不一样
在主节点上查看主从通信关系
在从节点上查看主从关系(6380、6379)
此时可以在master上写入数据,在slave上查看数据,此时主从复制配置完成
redis-sentinel-26379conf配置文件写入如下信息
redis-sentinel-26380conf和redis-sentinel-26381conf的配置仅仅差异是port(端口)的不同。
然后启动三个sentinel哨兵
此时查看哨兵是否成功通信
实例的思路
首先查看三个Redis的进程状态
第一个
第二个
第三个
直接干掉master,然后等待其他两个节点是否能自动被哨兵sentienl,切换为master节点
此时查看两个slave的状态
然后会发现slave节点成为master节点!!1总的老说,优化方案中只有两种,一种是给查询的字段加组合索引。另一种是给在用户和数据库中增加缓存
2添加索引方案:面对1~2千的并发是没有压力的,在往上则限制的瓶颈就是数据库最大连接数了,在上面中我用show global status like 'Max_used_connections’查看数据库可以知道数据库最大响应连接数是5700多,超过这个数tomcat直接报错连接被拒绝或者连接已经失效
3缓存方案:在上面的测试可以知道,要是我们事先把数据库的千万条数据同步到redis缓存中,瓶颈就是我们的设备硬件性能了,假如我们的主机有几百个核心CPU,就算是千万级的并发下也可以完全无压力,带个用户很好的。
4索引+缓存方案:缓存事先没有要查询的数据,在一万的并发下测试数据库毫无压力,程序先通过查缓存再查数据库大大减轻了数据库的压力,即使缓存不命中在一万的并发下也能正常访问,在10万并发下数据库依然没压力,但是redis服务器设置最大连接数300去处理10万的线程,4核CPU处理不过来,很多redis连接不了。我用show global status like 'Max_used_connections'查看数据库发现最大响应连接数是388,这么低所以数据库是不会挂掉的。雷达下载更专业。
5使用场景:a几百或者2000以下并发直接加上组合索引就可以了。b不想加索引又高并发的情况下可以先事先把数据放到缓存中,硬件设备支持下可解决百万级并发。c加索引且缓存事先没有数据,在硬件设备支持下可解决百万级并发问题。d不加索引且缓存事先没有数据,不可取,要80多秒才能得到结果,用户体验极差。
6原理:其实使用了redis的话为什么数据库不会崩溃是因为redis最大连接数为300,这样数据库最大同时连接数也是300多,所以不会挂掉,至于redis为什么设置为300是因为设置的太高就会报错(连接被拒绝)或者等待超时(就算设置等待超时的时间很长也会报这个错)。可以通过修改配置参数解决,工作中,曾遇到redis连接数一直不释放,导致请求阻塞甚至挂掉的问题。重启redis后,短暂性恢复正常,过一会又会异常。后来查阅相关文档了解到,对于此异常现象可以参考通过修改配置参数解决。
timeout 是指客户端和Redis服务端的连接超时时间,默认是0,表示永不超时;
tcp-keepalive 如果值非0,单位是秒,表示将周期性的使用SO_KEEPALIVE检测客户端是否还处于健康状态,避免服务器一直阻塞,官方给出的建议值是60。1、缓存。 缓存现在几乎是所有中大型网站都在用的必杀技,合理的利用缓存不仅能够提升网站访问速度,还能大大降低数据库的压力。Redis提供了键过期功能,也提供了灵活的键淘汰策略,所以,现在Redis用在缓存的场合非常多。(推荐:《 Redis视频教程 》)
2、排行榜。 很多网站都有排行榜应用的,如京东的月度销量榜单、商品按时间的上新排行榜等。Redis提供的有序集合数据类构能实现各种复杂的排行榜应用。
3、计数器。 什么是计数器,如电商网站商品的浏览量、视频网站视频的播放数等。为了保证数据实时效,每次浏览都得给+1,并发量高时如果每次都请求数据库 *** 作无疑是种挑战和压力。Redis提供的incr命令来实现计数器功能,内存 *** 作,性能非常好,非常适用于这些计数场景。
4、分布式会话。 集群模式下,在应用不多的情况下一般使用容器自带的session复制功能就能满足,当应用增多相对复杂的系统中,一般都会搭建以Redis等内存数据库为中心的session服务,session不再由容器管理,而是由session服务及内存数据库管理。
5、分布式锁。 在很多互联网公司中都使用了分布式技术,分布式技术带来的技术挑战是对同一个资源的并发访问,如全局ID、减库存、秒杀等场景,并发量不大的场景可以使用数据库的悲观锁、乐观锁来实现,但在并发量高的场合中,利用数据库锁来控制资源的并发访问是不太理想的,大大影响了数据库的性能。可以利用Redis的setnx功能来编写分布式的锁,如果设置返回1说明获取锁成功,否则获取锁失败,实际应用中要考虑的细节要更多。
长期把Redis做缓存用,总有一天Redis内存会满的,怎么处理呢?
在Redis的配置文件 redisconf 文件中,配置 maxmemory 的大小参数如下所示:
倘若实际的存储中超出了Redis的配置参数的大小时,Redis中有 淘汰策略 ,把 需要淘汰的key给淘汰掉,整理出干净的一块内存给新的key值使用 。
Redis提供了 6种的淘汰策略 ,其中默认的是 noeviction ,这6中淘汰策略如下:
LRU(Least Recently Used) 即表示最近最少使用,也就是在最近的时间内最少被访问的key,算法根据数据的历史访问记录来进行淘汰数据。
它的核心的思想就是: 假如一个key值在最近很少被使用到,那么在将来也很少会被访问 。
实际上Redis实现的LRU并不是真正的LRU算法,也就是名义上我们使用LRU算法淘汰键,但是实际上被淘汰的键并不一定是真正的最久没用的。
Redis使用的是近似的LRU算法, 通过随机采集法淘汰key,每次都会随机选出5个key,然后淘汰里面最近最少使用的key 。
这里的5个key只是默认的个数,具体的个数也可以在配置文件中进行配置,在配置文件中的配置如下图所示:
当近似LRU算法取值越大的时候就会越接近真实的LRU算法,可以这样理解,因为 取值越大那么获取的数据就越全,淘汰中的数据的就越接近最近最少使用的数据 。
那么为了实现根据时间实现LRU算法,Redis必须为每个key中额外的增加一个内存空间用于存储每个key的时间,大小是3字节。
在Redis 30中对近似的LRU算法做了一些优化,Redis中会维护大小是 16 的一个候选池的内存。
当第一次随机选取的采样数据,数据都会被放进候选池中,并且候选池中的数据会根据时间进行排序。
当第二次以后选取的数据,只有 小于候选池内的最小时间 的才会被放进候选池中。
当某一时刻候选池的数据满了,那么时间最大的key就会被挤出候选池。当执行淘汰时,直接从候选池中选取最近访问时间最小的key进行淘汰。
这样做的目的就是选取出最近似符合最近最少被访问的key值,能够正确的淘汰key值,因为随机选取的样本中的最小时间可能不是真正意义上的最小时间。
但是LRU算法有一个弊端:就是假如一个key值在以前都没有被访问到,然而最近一次被访问到了,那么就会认为它是热点数据,不会被淘汰。
然而有些数据以前经常被访问到,只是最近的时间内没有被访问到,这样就导致这些数据很可能被淘汰掉,这样一来就会出现误判而淘汰热点数据。
于是在Redis 40的时候除了LRU算法,新加了一种LFU算法, 那么什么是LFU算法算法呢?
LFU(Least Frequently Used) 即表示最近频繁被使用,也就是最近的时间段内,频繁被访问的key,它以最近的时间段的被访问次数的频率作为一种判断标准。
它的核心思想就是:根据key最近被访问的频率进行淘汰,比较少被访问的key优先淘汰,反之则优先保留。
LFU算法反映了一个key的热度情况,不会因为LRU算法的偶尔一次被访问被认为是热点数据。
在LFU算法中支持 volatile-lfu 策略和 allkeys-lfu 策略。
在Redis种有三种删除的 *** 作此策略,分别是:
在Redis中持久化的方式有两种 RDB 和 AOF
在RDB中是以快照的形式获取内存中某一时间点的数据副本,在创建RDB文件的时候可以通过 save 和 bgsave 命令执行创建RDB文件。
这两个命令都不会把过期的key保存到RDB文件中 ,这样也能达到删除过期key的效果。
当在启动Redis载入RDB文件的时候, Master 不会把过期的key载入,而 Slave 会把过期的key载入。
在AOF模式下,Redis提供了Rewite的优化措施,执行的命令分别是 REWRITEAOF 和 BGREWRITEAOF , 这两个命令都不会把过期的key写入到AOF文件中,也能删除过期key 。
RDB 是一种快照存储持久化方式,具体就是将 Redis 某一时刻的内存数据保存到硬盘的文件当中,默认保存的文件名为 dumprdb ,而在 Redis 服务器启动时,会重新加载 dumprdb 文件的数据到内存当中恢复数据。
开启RBD持久化方式
开启 RDB 持久化方式很简单,客户端可以通过向 Redis 服务器发送 save 或 bgsave 命令让服务器生成 rdb 文件,或者通过服务器配置文件指定触发 RDB 条件。
save 命令是一个同步 *** 作。
当客户端向服务器发送 save 命令请求进行持久化时,服务器会阻塞 save 命令之后的其他客户端的请求,直到数据同步完成。
与 save 命令不同, bgsave 命令是一个异步 *** 作。
当客户端发服务发出 bgsave 命令时, Redis 服务器主进程会 forks 一个子进程来数据同步问题,在将数据保存到rdb文件之后,子进程会退出。
所以,与 save 命令相比, Redis 服务器在处理 bgsave 采用子线程进行IO写入,而主进程仍然可以接收其他请求,但 forks 子进程是同步的,所以 forks 子进程时,一样不能接收其他请求,这意味着,如果forks一个子进程花费的时间太久(一般是很快的),bgsave命令仍然有阻塞其他客户的请求的情况发生。
除了通过客户端发送命令外,还有一种方式,就是在 Redis 配置文件中的 save 指定到达触发RDB持久化的条件,比如多少秒内至少达到多少写 *** 作就开启 RDB 数据同步。
例如我们可以在配置文件redisconf指定如下的选项:
之后在启动服务器时加载配置文件。
这种通过服务器配置文件触发RDB的方式,与bgsave命令类似,达到触发条件时,会forks一个子进程进行数据同步,不过最好不要通过这方式来触发RDB持久化,因为设置触发的时间太短,则容易频繁写入rdb文件,影响服务器性能,时间设置太长则会造成数据丢失。
介绍了三种让服务器生成rdb文件的方式,无论是由主进程生成还是子进程来生成,其过程如下:
Redis 的另外一个持久化方式: AOF(Append-only file) 。
与 RDB 存储某个时刻的快照不同, AOF 持久化方式会记录客户端对服务器的每一次写 *** 作命令,并将这些写 *** 作以 Redis 协议追加保存到以后缀为 aof 文件末尾,在Redis服务器重启时,会加载并运行 aof 文件的命令,以达到恢复数据的目的。
Redis默认不开启AOF持久化方式,我们可以在配置文件中开启并进行更加详细的配置,如下面的redisconf文件:
在上面的配置文件中,我们可以通过 appendfsync 选项指定写入策略,有三个选项
客户端的每一个写 *** 作都保存到 aof 文件当,这种策略很安全,但是每个写请注都有IO *** 作,所以也很慢。
appendfsync 的默认写入策略,每秒写入一次 aof 文件,因此,最多可能会丢失1s的数据。
Redis 服务器不负责写入 aof ,而是交由 *** 作系统来处理什么时候写入 aof 文件。更快,但也是最不安全的选择,不推荐使用。
AOF将客户端的每一个写 *** 作都追加到 aof 文件末尾,比如对一个key多次执行incr命令,这时候, aof 保存每一次命令到aof文件中,aof文件会变得非常大。
aof文件太大,加载aof文件恢复数据时,就会非常慢,为了解决这个问题,Redis支持aof文件重写,通过重写aof,可以生成一个恢复当前数据的最少命令集,比如上面的例子中那么多条命令,可以重写为:
通过在redisconf配置文件中的选项no-appendfsync-on-rewrite可以设置是否开启重写,这种方式会在每次fsync时都重写,影响服务器性能,因此默认值为no,不推荐使用。
客户端向服务器发送bgrewriteaof命令,也可以让服务器进行AOF重写。
AOF重写方式也是异步 *** 作,即如果要写入aof文件,则Redis主进程会forks一个子进程来处理,如下所示:
在写入aof日志文件时,如果Redis服务器宕机,则aof日志文件文件会出格式错误,在重启Redis服务器时,Redis服务器会拒绝载入这个aof文件,可以通过以下步骤修复aof并恢复数据。
AOF只是追加日志文件,因此对服务器性能影响较小,速度比RDB要快,消耗的内存较少。
我们可以从几个方面对比一下RDB与AOF,在应用时,要根本自己的实际需求,选择RDB或者AOF,其实,如果想要数据足够安全,可以两种方式都开启,但两种持久化方式同时进行IO *** 作,会严重影响服务器性能,因此有时候不得不做出选择。
当RDB与AOF两种方式都开启时,Redis会优先使用AOF日志来恢复数据,因为AOF保存的文件比RDB文件更完整。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)